通过习语识别在线性代数应用中的加速机会

J. P. L. Carvalho, Braedy Kuzma, G. Araújo
{"title":"通过习语识别在线性代数应用中的加速机会","authors":"J. P. L. Carvalho, Braedy Kuzma, G. Araújo","doi":"10.1145/3375555.3383586","DOIUrl":null,"url":null,"abstract":"General matrix-matrix multiplication (GEMM) is a critical operation in many application domains [1]. It is a central building block of deep learning algorithms, computer graphics operations, and other linear algebra dominated applications. Due to this, GEMM has been extensively studied and optimized, resulting in libraries of exceptional quality such as BLAS, Eigen, and other platform specific implementations such as MKL (Intel) and ESSL (IBM) [2,3]. Despite these successes, the GeMM idiom continues to be re-implemented by programmers, without consideration for the intricacies already accounted for by the aforementioned libraries. To this end, this project aims to provide transparent adoption of high-performance implementations of GEMM through a novel optimization pass implemented within the LLVM framework using idiom recognition techniques[4]. Sub-optimal implementations of GEMM are replaced by equivalent library calls.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Acceleration Opportunities in Linear Algebra Applications via Idiom Recognition\",\"authors\":\"J. P. L. Carvalho, Braedy Kuzma, G. Araújo\",\"doi\":\"10.1145/3375555.3383586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General matrix-matrix multiplication (GEMM) is a critical operation in many application domains [1]. It is a central building block of deep learning algorithms, computer graphics operations, and other linear algebra dominated applications. Due to this, GEMM has been extensively studied and optimized, resulting in libraries of exceptional quality such as BLAS, Eigen, and other platform specific implementations such as MKL (Intel) and ESSL (IBM) [2,3]. Despite these successes, the GeMM idiom continues to be re-implemented by programmers, without consideration for the intricacies already accounted for by the aforementioned libraries. To this end, this project aims to provide transparent adoption of high-performance implementations of GEMM through a novel optimization pass implemented within the LLVM framework using idiom recognition techniques[4]. Sub-optimal implementations of GEMM are replaced by equivalent library calls.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375555.3383586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375555.3383586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一般矩阵-矩阵乘法(GEMM)是许多应用领域的关键运算[1]。它是深度学习算法、计算机图形操作和其他线性代数主导应用的核心构建块。因此,GEMM得到了广泛的研究和优化,产生了质量卓越的库,如BLAS、Eigen,以及其他特定平台的实现,如MKL (Intel)和ESSL (IBM)[2,3]。尽管取得了这些成功,但程序员仍在继续重新实现GeMM习语,而不考虑前面提到的库所带来的复杂性。为此,本项目旨在通过使用成语识别技术在LLVM框架内实现的新颖优化通道,透明地采用GEMM的高性能实现[4]。GEMM的次优实现被等效的库调用取代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acceleration Opportunities in Linear Algebra Applications via Idiom Recognition
General matrix-matrix multiplication (GEMM) is a critical operation in many application domains [1]. It is a central building block of deep learning algorithms, computer graphics operations, and other linear algebra dominated applications. Due to this, GEMM has been extensively studied and optimized, resulting in libraries of exceptional quality such as BLAS, Eigen, and other platform specific implementations such as MKL (Intel) and ESSL (IBM) [2,3]. Despite these successes, the GeMM idiom continues to be re-implemented by programmers, without consideration for the intricacies already accounted for by the aforementioned libraries. To this end, this project aims to provide transparent adoption of high-performance implementations of GEMM through a novel optimization pass implemented within the LLVM framework using idiom recognition techniques[4]. Sub-optimal implementations of GEMM are replaced by equivalent library calls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sampling-based Label Propagation for Balanced Graph Partitioning ICPE '22: ACM/SPEC International Conference on Performance Engineering, Bejing, China, April 9 - 13, 2022 The Role of Analytical Models in the Engineering and Science of Computer Systems Enhancing Observability of Serverless Computing with the Serverless Application Analytics Framework Towards Elastic and Sustainable Data Stream Processing on Edge Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1