欧几里得DBSCAN的硬度和近似

Junhao Gan, Yufei Tao
{"title":"欧几里得DBSCAN的硬度和近似","authors":"Junhao Gan, Yufei Tao","doi":"10.1145/3083897","DOIUrl":null,"url":null,"abstract":"DBSCAN is a method proposed in 1996 for clustering multi-dimensional points, and has received extensive applications. Its computational hardness is still unsolved to this date. The original KDD‚96 paper claimed an algorithm of O(n log n) ”average runtime complexity„ (where n is the number of data points) without a rigorous proof. In 2013, a genuine O(n log n)-time algorithm was found in 2D space under Euclidean distance. The hardness of dimensionality d ≥3 has remained open ever since. This article considers the problem of computing DBSCAN clusters from scratch (assuming no existing indexes) under Euclidean distance. We prove that, for d ≥3, the problem requires ω(n 4/3) time to solve, unless very significant breakthroughs—ones widely believed to be impossible—could be made in theoretical computer science. Motivated by this, we propose a relaxed version of the problem called ρ-approximate DBSCAN, which returns the same clusters as DBSCAN, unless the clusters are ”unstable„ (i.e., they change once the input parameters are slightly perturbed). The ρ-approximate problem can be settled in O(n) expected time regardless of the constant dimensionality d. The article also enhances the previous result on the exact DBSCAN problem in 2D space. We show that, if the n data points have been pre-sorted on each dimension (i.e., one sorted list per dimension), the problem can be settled in O(n) worst-case time. As a corollary, when all the coordinates are integers, the 2D DBSCAN problem can be solved in O(n log log n) time deterministically, improving the existing O(n log n) bound.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"43 1","pages":"1 - 45"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"On the Hardness and Approximation of Euclidean DBSCAN\",\"authors\":\"Junhao Gan, Yufei Tao\",\"doi\":\"10.1145/3083897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DBSCAN is a method proposed in 1996 for clustering multi-dimensional points, and has received extensive applications. Its computational hardness is still unsolved to this date. The original KDD‚96 paper claimed an algorithm of O(n log n) ”average runtime complexity„ (where n is the number of data points) without a rigorous proof. In 2013, a genuine O(n log n)-time algorithm was found in 2D space under Euclidean distance. The hardness of dimensionality d ≥3 has remained open ever since. This article considers the problem of computing DBSCAN clusters from scratch (assuming no existing indexes) under Euclidean distance. We prove that, for d ≥3, the problem requires ω(n 4/3) time to solve, unless very significant breakthroughs—ones widely believed to be impossible—could be made in theoretical computer science. Motivated by this, we propose a relaxed version of the problem called ρ-approximate DBSCAN, which returns the same clusters as DBSCAN, unless the clusters are ”unstable„ (i.e., they change once the input parameters are slightly perturbed). The ρ-approximate problem can be settled in O(n) expected time regardless of the constant dimensionality d. The article also enhances the previous result on the exact DBSCAN problem in 2D space. We show that, if the n data points have been pre-sorted on each dimension (i.e., one sorted list per dimension), the problem can be settled in O(n) worst-case time. As a corollary, when all the coordinates are integers, the 2D DBSCAN problem can be solved in O(n log log n) time deterministically, improving the existing O(n log n) bound.\",\"PeriodicalId\":6983,\"journal\":{\"name\":\"ACM Transactions on Database Systems (TODS)\",\"volume\":\"43 1\",\"pages\":\"1 - 45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Database Systems (TODS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3083897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3083897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

DBSCAN是1996年提出的一种多维点聚类方法,得到了广泛的应用。它的计算硬度至今仍未解决。最初的KDD, 96论文声称一个O(n log n)“平均运行时复杂度”(其中n是数据点的数量)的算法没有严格的证明。2013年,在欧氏距离下的二维空间中找到了一个真正的O(n log n)时间算法。d≥3维的硬度一直保持开放状态。本文考虑在欧氏距离下从头开始计算DBSCAN簇(假设没有现有索引)的问题。我们证明,对于d≥3,问题需要ω(n 4/3)时间来解决,除非在理论计算机科学中可以取得非常重大的突破-这些突破被普遍认为是不可能的。受此启发,我们提出了这个问题的一个宽松版本,称为ρ-approximate DBSCAN,它返回与DBSCAN相同的簇,除非簇是“不稳定的”(即,一旦输入参数受到轻微扰动,它们就会改变)。在不考虑维数d不变的情况下,ρ-近似问题可以在O(n)期望时间内得到解决。本文还对二维空间中精确DBSCAN问题的结果进行了改进。我们证明,如果n个数据点已经在每个维度上预先排序(即每个维度一个排序列表),则问题可以在O(n)最坏情况时间内解决。作为一个推论,当所有坐标都为整数时,二维DBSCAN问题可以在O(n log log n)时间内确定性地求解,从而改进了现有的O(n log n)界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Hardness and Approximation of Euclidean DBSCAN
DBSCAN is a method proposed in 1996 for clustering multi-dimensional points, and has received extensive applications. Its computational hardness is still unsolved to this date. The original KDD‚96 paper claimed an algorithm of O(n log n) ”average runtime complexity„ (where n is the number of data points) without a rigorous proof. In 2013, a genuine O(n log n)-time algorithm was found in 2D space under Euclidean distance. The hardness of dimensionality d ≥3 has remained open ever since. This article considers the problem of computing DBSCAN clusters from scratch (assuming no existing indexes) under Euclidean distance. We prove that, for d ≥3, the problem requires ω(n 4/3) time to solve, unless very significant breakthroughs—ones widely believed to be impossible—could be made in theoretical computer science. Motivated by this, we propose a relaxed version of the problem called ρ-approximate DBSCAN, which returns the same clusters as DBSCAN, unless the clusters are ”unstable„ (i.e., they change once the input parameters are slightly perturbed). The ρ-approximate problem can be settled in O(n) expected time regardless of the constant dimensionality d. The article also enhances the previous result on the exact DBSCAN problem in 2D space. We show that, if the n data points have been pre-sorted on each dimension (i.e., one sorted list per dimension), the problem can be settled in O(n) worst-case time. As a corollary, when all the coordinates are integers, the 2D DBSCAN problem can be solved in O(n log log n) time deterministically, improving the existing O(n log n) bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Finding Rank Regret Representatives Answering (Unions of) Conjunctive Queries using Random Access and Random-Order Enumeration Persistent Summaries Influence Maximization Revisited: Efficient Sampling with Bound Tightened The Space-Efficient Core of Vadalog
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1