T. Sunami, J. Kondo, I. Hirao, Kimitsuna Watanabe, K. Miura, A. Takénaka
{"title":"d(GCGAAGC)和d(GCGAAAGC)(四角形)的结构:剪切G.A对的伙伴交换,形成功能的G.AxA.G交叉。","authors":"T. Sunami, J. Kondo, I. Hirao, Kimitsuna Watanabe, K. Miura, A. Takénaka","doi":"10.1107/S0907444904005104","DOIUrl":null,"url":null,"abstract":"The DNA fragments d(GCGAAGC) and d(GCGAAAGC) are known to exhibit several extraordinary properties. Their crystal structures have been determined at 1.6 and 1.65 A resolution, respectively. Two heptamers aligned in an antiparallel fashion associate to form a duplex having molecular twofold symmetry. In the crystallographic asymmetric unit, there are three structurally identical duplexes. At both ends of each duplex, two Watson-Crick G.C pairs constitute the stem regions. In the central part, two sheared G.A pairs are crossed and stacked on each other, so that the stacked two guanine bases of the G.AxA.G crossing expose their Watson-Crick and major-groove sites into solvent, suggesting a functional role. The adenine moieties of the A(5) residues are inside the duplex, wedged between the A(4) and G(6) residues, but there are no partners for interactions. To close the open space on the counter strand, the duplex is strongly bent. In the asymmetric unit of the d(GCGAAAGC) crystal (tetragonal form), there is only one octamer chain. However, the two chains related by the crystallographic twofold symmetry associate to form an antiparallel duplex, similar to the base-intercalated duplex found in the hexagonal crystal form of the octamer. It is interesting to note that the significant difference between the present bulge-in structure of d(GCGAAGC) and the base-intercalated duplex of d(GCGAAAGC) can be ascribed to a switching of partners of the sheared G.A pairs.","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Structures of d(GCGAAGC) and d(GCGAAAGC) (tetragonal form): a switching of partners of the sheared G.A pairs to form a functional G.AxA.G crossing.\",\"authors\":\"T. Sunami, J. Kondo, I. Hirao, Kimitsuna Watanabe, K. Miura, A. Takénaka\",\"doi\":\"10.1107/S0907444904005104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The DNA fragments d(GCGAAGC) and d(GCGAAAGC) are known to exhibit several extraordinary properties. Their crystal structures have been determined at 1.6 and 1.65 A resolution, respectively. Two heptamers aligned in an antiparallel fashion associate to form a duplex having molecular twofold symmetry. In the crystallographic asymmetric unit, there are three structurally identical duplexes. At both ends of each duplex, two Watson-Crick G.C pairs constitute the stem regions. In the central part, two sheared G.A pairs are crossed and stacked on each other, so that the stacked two guanine bases of the G.AxA.G crossing expose their Watson-Crick and major-groove sites into solvent, suggesting a functional role. The adenine moieties of the A(5) residues are inside the duplex, wedged between the A(4) and G(6) residues, but there are no partners for interactions. To close the open space on the counter strand, the duplex is strongly bent. In the asymmetric unit of the d(GCGAAAGC) crystal (tetragonal form), there is only one octamer chain. However, the two chains related by the crystallographic twofold symmetry associate to form an antiparallel duplex, similar to the base-intercalated duplex found in the hexagonal crystal form of the octamer. It is interesting to note that the significant difference between the present bulge-in structure of d(GCGAAGC) and the base-intercalated duplex of d(GCGAAAGC) can be ascribed to a switching of partners of the sheared G.A pairs.\",\"PeriodicalId\":6895,\"journal\":{\"name\":\"Acta Crystallographica Section D: Biological Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2004-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section D: Biological Crystallography\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S0907444904005104\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S0907444904005104","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structures of d(GCGAAGC) and d(GCGAAAGC) (tetragonal form): a switching of partners of the sheared G.A pairs to form a functional G.AxA.G crossing.
The DNA fragments d(GCGAAGC) and d(GCGAAAGC) are known to exhibit several extraordinary properties. Their crystal structures have been determined at 1.6 and 1.65 A resolution, respectively. Two heptamers aligned in an antiparallel fashion associate to form a duplex having molecular twofold symmetry. In the crystallographic asymmetric unit, there are three structurally identical duplexes. At both ends of each duplex, two Watson-Crick G.C pairs constitute the stem regions. In the central part, two sheared G.A pairs are crossed and stacked on each other, so that the stacked two guanine bases of the G.AxA.G crossing expose their Watson-Crick and major-groove sites into solvent, suggesting a functional role. The adenine moieties of the A(5) residues are inside the duplex, wedged between the A(4) and G(6) residues, but there are no partners for interactions. To close the open space on the counter strand, the duplex is strongly bent. In the asymmetric unit of the d(GCGAAAGC) crystal (tetragonal form), there is only one octamer chain. However, the two chains related by the crystallographic twofold symmetry associate to form an antiparallel duplex, similar to the base-intercalated duplex found in the hexagonal crystal form of the octamer. It is interesting to note that the significant difference between the present bulge-in structure of d(GCGAAGC) and the base-intercalated duplex of d(GCGAAAGC) can be ascribed to a switching of partners of the sheared G.A pairs.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.