{"title":"在NVRAM中通过智能覆盖保存位翻转","authors":"A. Kulandai, Thomas Schwarz","doi":"10.36244/icj.2022.4.5","DOIUrl":null,"url":null,"abstract":"New generations of non-volatile random access memories will combine the best features of memory (access times, byte addressability) with the best features of storage (non-volatility, low costs per byte). Some, like PCM, have a limited endurance. All will only consume energy when accessed, but writes will use much more energy than reads. These characteristics put a cost on flipping bits in memory. Bit-flip aware data structures lower the number of bits flipped by not resetting fields to zero to indicate a deleted record but by using bit-maps. If given a choice of where to over-write data, they will select the location which results in a lower number of bit-flips. We calculate the expected bit-flip savings of this strategy and derive a rule to determine the number of the possible candidate locations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saving Bit-flips through Smart Overwrites in NVRAM\",\"authors\":\"A. Kulandai, Thomas Schwarz\",\"doi\":\"10.36244/icj.2022.4.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New generations of non-volatile random access memories will combine the best features of memory (access times, byte addressability) with the best features of storage (non-volatility, low costs per byte). Some, like PCM, have a limited endurance. All will only consume energy when accessed, but writes will use much more energy than reads. These characteristics put a cost on flipping bits in memory. Bit-flip aware data structures lower the number of bits flipped by not resetting fields to zero to indicate a deleted record but by using bit-maps. If given a choice of where to over-write data, they will select the location which results in a lower number of bit-flips. We calculate the expected bit-flip savings of this strategy and derive a rule to determine the number of the possible candidate locations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36244/icj.2022.4.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36244/icj.2022.4.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Saving Bit-flips through Smart Overwrites in NVRAM
New generations of non-volatile random access memories will combine the best features of memory (access times, byte addressability) with the best features of storage (non-volatility, low costs per byte). Some, like PCM, have a limited endurance. All will only consume energy when accessed, but writes will use much more energy than reads. These characteristics put a cost on flipping bits in memory. Bit-flip aware data structures lower the number of bits flipped by not resetting fields to zero to indicate a deleted record but by using bit-maps. If given a choice of where to over-write data, they will select the location which results in a lower number of bit-flips. We calculate the expected bit-flip savings of this strategy and derive a rule to determine the number of the possible candidate locations.