城市危险货物管理的概率风险感知与预测

Jingyuan Wang, Xin Lin, Y. Zuo, Junjie Wu
{"title":"城市危险货物管理的概率风险感知与预测","authors":"Jingyuan Wang, Xin Lin, Y. Zuo, Junjie Wu","doi":"10.1145/3448256","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed the emergence of worldwide megalopolises and the accompanying public safety events, making urban safety a top priority in modern urban management. Among various threats, dangerous goods such as gas and hazardous chemicals transported through cities have bred repeated tragedies and become the deadly “bomb” we sleep with every day. While tremendous research efforts have been devoted to dealing with dangerous goods transportation (DGT) issues, further study is still in great need to quantify this problem and explore its intrinsic dynamics from a big data perspective. In this article, we present a novel system called DGeye, to feature a fusion between DGT trajectory data and residential population data for dangers perception and prediction. Specifically, DGeye first develops a probabilistic graphical model-based approach to mine spatio-temporally adjacent risk patterns from population-aware risk trajectories. Then, DGeye builds the novel causality network among risk patterns for risk pain-point identification, risk source attribution, and online risky state prediction. Experiments on both Beijing and Tianjin cities demonstrate the effectiveness of DGeye in real-life DGT risk management. As a case in point, our report powered by DGeye successfully drove the government to lay down gas pipelines for the famous Guijie food street in Beijing.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"46 1","pages":"1 - 30"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"DGeye: Probabilistic Risk Perception and Prediction for Urban Dangerous Goods Management\",\"authors\":\"Jingyuan Wang, Xin Lin, Y. Zuo, Junjie Wu\",\"doi\":\"10.1145/3448256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have witnessed the emergence of worldwide megalopolises and the accompanying public safety events, making urban safety a top priority in modern urban management. Among various threats, dangerous goods such as gas and hazardous chemicals transported through cities have bred repeated tragedies and become the deadly “bomb” we sleep with every day. While tremendous research efforts have been devoted to dealing with dangerous goods transportation (DGT) issues, further study is still in great need to quantify this problem and explore its intrinsic dynamics from a big data perspective. In this article, we present a novel system called DGeye, to feature a fusion between DGT trajectory data and residential population data for dangers perception and prediction. Specifically, DGeye first develops a probabilistic graphical model-based approach to mine spatio-temporally adjacent risk patterns from population-aware risk trajectories. Then, DGeye builds the novel causality network among risk patterns for risk pain-point identification, risk source attribution, and online risky state prediction. Experiments on both Beijing and Tianjin cities demonstrate the effectiveness of DGeye in real-life DGT risk management. As a case in point, our report powered by DGeye successfully drove the government to lay down gas pipelines for the famous Guijie food street in Beijing.\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"46 1\",\"pages\":\"1 - 30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3448256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来,世界性特大城市的出现和随之而来的公共安全事件,使城市安全成为现代城市管理的重中之重。在各种威胁中,通过城市运输的天然气和危险化学品等危险货物一再酿成悲剧,成为我们每天睡觉的致命“炸弹”。尽管对危险品运输问题的研究已经投入了大量的精力,但从大数据的角度对危险品运输问题进行量化,探索其内在动态,仍需要进一步的研究。在本文中,我们提出了一个新的系统,称为geye,其特点是融合DGT轨迹数据和居住人口数据,用于危险感知和预测。具体来说,geye首先开发了一种基于概率图形模型的方法,从人口感知风险轨迹中挖掘时空相邻风险模式。然后,在风险模式之间构建新的因果关系网络,用于风险痛点识别、风险源归因和在线风险状态预测。在北京和天津的实验证明了geye在实际DGT风险管理中的有效性。一个很好的例子是,我们的报告成功地推动了政府为北京著名的簋街美食街铺设天然气管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DGeye: Probabilistic Risk Perception and Prediction for Urban Dangerous Goods Management
Recent years have witnessed the emergence of worldwide megalopolises and the accompanying public safety events, making urban safety a top priority in modern urban management. Among various threats, dangerous goods such as gas and hazardous chemicals transported through cities have bred repeated tragedies and become the deadly “bomb” we sleep with every day. While tremendous research efforts have been devoted to dealing with dangerous goods transportation (DGT) issues, further study is still in great need to quantify this problem and explore its intrinsic dynamics from a big data perspective. In this article, we present a novel system called DGeye, to feature a fusion between DGT trajectory data and residential population data for dangers perception and prediction. Specifically, DGeye first develops a probabilistic graphical model-based approach to mine spatio-temporally adjacent risk patterns from population-aware risk trajectories. Then, DGeye builds the novel causality network among risk patterns for risk pain-point identification, risk source attribution, and online risky state prediction. Experiments on both Beijing and Tianjin cities demonstrate the effectiveness of DGeye in real-life DGT risk management. As a case in point, our report powered by DGeye successfully drove the government to lay down gas pipelines for the famous Guijie food street in Beijing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Graph Learning for Session-based Recommendation GraphHINGE: Learning Interaction Models of Structured Neighborhood on Heterogeneous Information Network Scalable Representation Learning for Dynamic Heterogeneous Information Networks via Metagraphs Complex-valued Neural Network-based Quantum Language Models eFraudCom: An E-commerce Fraud Detection System via Competitive Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1