电活性材料的4D打印

Andrew Y. Chen, E. Pegg, Ailin Chen, Zeqing Jin, Grace X. Gu
{"title":"电活性材料的4D打印","authors":"Andrew Y. Chen, E. Pegg, Ailin Chen, Zeqing Jin, Grace X. Gu","doi":"10.1002/aisy.202100019","DOIUrl":null,"url":null,"abstract":"In recent years, the intersection of 3D printing and “smart” stimuli‐responsive materials has led to the development of 4D printing, an emerging field that is a subset of current additive manufacturing research. By integrating existing printing processes with novel materials, 4D printing enables the direct fabrication of sensors, controllable structures, and other functional devices. Compared to traditional manufacturing processes for smart materials, 4D printing permits a high degree of design freedom and flexibility in terms of printable geometry. An important branch of 4D printing concerns electroactive materials, which form the backbone of printable devices with practical applications throughout biology, engineering, and chemistry. Herein, the recent progress in the 4D printing of electroactive materials using several widely studied printing processes is reviewed. In particular, constituent materials and mechanisms for their preparation and printing are discussed, and functional electroactive devices fabricated using 4D printing are highlighted. Current challenges are also described and some of the many data‐driven opportunities for advancement in this promising field are presented.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"4D Printing of Electroactive Materials\",\"authors\":\"Andrew Y. Chen, E. Pegg, Ailin Chen, Zeqing Jin, Grace X. Gu\",\"doi\":\"10.1002/aisy.202100019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the intersection of 3D printing and “smart” stimuli‐responsive materials has led to the development of 4D printing, an emerging field that is a subset of current additive manufacturing research. By integrating existing printing processes with novel materials, 4D printing enables the direct fabrication of sensors, controllable structures, and other functional devices. Compared to traditional manufacturing processes for smart materials, 4D printing permits a high degree of design freedom and flexibility in terms of printable geometry. An important branch of 4D printing concerns electroactive materials, which form the backbone of printable devices with practical applications throughout biology, engineering, and chemistry. Herein, the recent progress in the 4D printing of electroactive materials using several widely studied printing processes is reviewed. In particular, constituent materials and mechanisms for their preparation and printing are discussed, and functional electroactive devices fabricated using 4D printing are highlighted. Current challenges are also described and some of the many data‐driven opportunities for advancement in this promising field are presented.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202100019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202100019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

近年来,3D打印和“智能”刺激响应材料的交叉导致了4D打印的发展,这是一个新兴领域,是当前增材制造研究的一个子集。通过将现有的打印工艺与新材料相结合,4D打印可以直接制造传感器、可控结构和其他功能设备。与智能材料的传统制造工艺相比,4D打印在可打印几何形状方面具有高度的设计自由度和灵活性。4D打印的一个重要分支涉及电活性材料,它构成了可打印设备的支柱,在整个生物学、工程和化学领域都有实际应用。本文综述了电活性材料4D打印的最新进展,包括几种广泛研究的打印工艺。特别讨论了组成材料及其制备和打印的机理,并重点介绍了使用4D打印制造的功能电活性器件。本文还描述了当前的挑战,并提出了在这个有前途的领域中许多数据驱动的进步机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
4D Printing of Electroactive Materials
In recent years, the intersection of 3D printing and “smart” stimuli‐responsive materials has led to the development of 4D printing, an emerging field that is a subset of current additive manufacturing research. By integrating existing printing processes with novel materials, 4D printing enables the direct fabrication of sensors, controllable structures, and other functional devices. Compared to traditional manufacturing processes for smart materials, 4D printing permits a high degree of design freedom and flexibility in terms of printable geometry. An important branch of 4D printing concerns electroactive materials, which form the backbone of printable devices with practical applications throughout biology, engineering, and chemistry. Herein, the recent progress in the 4D printing of electroactive materials using several widely studied printing processes is reviewed. In particular, constituent materials and mechanisms for their preparation and printing are discussed, and functional electroactive devices fabricated using 4D printing are highlighted. Current challenges are also described and some of the many data‐driven opportunities for advancement in this promising field are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1