{"title":"基于差异隐私的合作-竞争多智能体系统的安全共识控制","authors":"Jiayue Ma, Jiangping Hu","doi":"10.14736/kyb-2022-3-0426","DOIUrl":null,"url":null,"abstract":"This paper investigates a safe consensus problem for cooperative-competitive multi-agent systems using a differential privacy (DP) approach. Considering that the agents simultaneously interact cooperatively and competitively, we propose a novel DP bipartite consensus algorithm, which guarantees that the DP strategy only works on competitive pairs of agents. We then prove that the proposed algorithm can achieve the mean square bipartite consensus and ( p, r )- accuracy. Furthermore, a differential privacy analysis is conducted, which shows that the performance of privacy protection is positively correlated with the number of neighbors. Thus, a practical method is established for the agents to select their own privacy levels. Finally, the simulation results are presented to demonstrate the validity of the proposed safe consensus algorithm.","PeriodicalId":49928,"journal":{"name":"Kybernetika","volume":"47 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Safe consensus control of cooperative-competitive multi-agent systems via differential privacy\",\"authors\":\"Jiayue Ma, Jiangping Hu\",\"doi\":\"10.14736/kyb-2022-3-0426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a safe consensus problem for cooperative-competitive multi-agent systems using a differential privacy (DP) approach. Considering that the agents simultaneously interact cooperatively and competitively, we propose a novel DP bipartite consensus algorithm, which guarantees that the DP strategy only works on competitive pairs of agents. We then prove that the proposed algorithm can achieve the mean square bipartite consensus and ( p, r )- accuracy. Furthermore, a differential privacy analysis is conducted, which shows that the performance of privacy protection is positively correlated with the number of neighbors. Thus, a practical method is established for the agents to select their own privacy levels. Finally, the simulation results are presented to demonstrate the validity of the proposed safe consensus algorithm.\",\"PeriodicalId\":49928,\"journal\":{\"name\":\"Kybernetika\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kybernetika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14736/kyb-2022-3-0426\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kybernetika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14736/kyb-2022-3-0426","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Safe consensus control of cooperative-competitive multi-agent systems via differential privacy
This paper investigates a safe consensus problem for cooperative-competitive multi-agent systems using a differential privacy (DP) approach. Considering that the agents simultaneously interact cooperatively and competitively, we propose a novel DP bipartite consensus algorithm, which guarantees that the DP strategy only works on competitive pairs of agents. We then prove that the proposed algorithm can achieve the mean square bipartite consensus and ( p, r )- accuracy. Furthermore, a differential privacy analysis is conducted, which shows that the performance of privacy protection is positively correlated with the number of neighbors. Thus, a practical method is established for the agents to select their own privacy levels. Finally, the simulation results are presented to demonstrate the validity of the proposed safe consensus algorithm.
期刊介绍:
Kybernetika is the bi-monthly international journal dedicated for rapid publication of high-quality, peer-reviewed research articles in fields covered by its title. The journal is published by Nakladatelství Academia, Centre of Administration and Operations of the Czech Academy of Sciences for the Institute of Information Theory and Automation of The Czech Academy of Sciences.
Kybernetika traditionally publishes research results in the fields of Control Sciences, Information Sciences, Statistical Decision Making, Applied Probability Theory, Random Processes, Operations Research, Fuzziness and Uncertainty Theories, as well as in the topics closely related to the above fields.