{"title":"纳米改性液体的热物理性质","authors":"A. J. Ali, E. Tugolukov, L. Habeeb","doi":"10.17277/amt.2020.01.pp.018-026","DOIUrl":null,"url":null,"abstract":"This paper attempts to determine thermophysical properties such as density, heat capacity and thermal conductivity for four types of nanoparticle suspension in water by using theoretical models. Three concentrations of 0.01, 0.05 and 0.1 wt. % nanoparticles were used at temperatures 35, 40 and 45 °C. It also attempts to present the properties of (CNT Taunit M) and the method of its preparation. It was observed that thermal conductivity and density increased, and contrariwise, specific heat decreased with an increase in volume concentration at various temperatures.","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"293 1","pages":"018-026"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermophysical Properties of Nanomodified Liquids\",\"authors\":\"A. J. Ali, E. Tugolukov, L. Habeeb\",\"doi\":\"10.17277/amt.2020.01.pp.018-026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper attempts to determine thermophysical properties such as density, heat capacity and thermal conductivity for four types of nanoparticle suspension in water by using theoretical models. Three concentrations of 0.01, 0.05 and 0.1 wt. % nanoparticles were used at temperatures 35, 40 and 45 °C. It also attempts to present the properties of (CNT Taunit M) and the method of its preparation. It was observed that thermal conductivity and density increased, and contrariwise, specific heat decreased with an increase in volume concentration at various temperatures.\",\"PeriodicalId\":13355,\"journal\":{\"name\":\"Image Journal of Advanced Materials and Technologies\",\"volume\":\"293 1\",\"pages\":\"018-026\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Journal of Advanced Materials and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17277/amt.2020.01.pp.018-026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Journal of Advanced Materials and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17277/amt.2020.01.pp.018-026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper attempts to determine thermophysical properties such as density, heat capacity and thermal conductivity for four types of nanoparticle suspension in water by using theoretical models. Three concentrations of 0.01, 0.05 and 0.1 wt. % nanoparticles were used at temperatures 35, 40 and 45 °C. It also attempts to present the properties of (CNT Taunit M) and the method of its preparation. It was observed that thermal conductivity and density increased, and contrariwise, specific heat decreased with an increase in volume concentration at various temperatures.