台湾假单胞菌VLB120代谢工程对生物质衍生芳烃合成鼠李糖脂的影响

IF 3.7 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic Engineering Communications Pub Date : 2022-12-01 DOI:10.1016/j.mec.2022.e00202
Vaishnavi Sivapuratharasan , Christoph Lenzen , Carina Michel , Anantha Barathi Muthukrishnan , Guhan Jayaraman , Lars M. Blank
{"title":"台湾假单胞菌VLB120代谢工程对生物质衍生芳烃合成鼠李糖脂的影响","authors":"Vaishnavi Sivapuratharasan ,&nbsp;Christoph Lenzen ,&nbsp;Carina Michel ,&nbsp;Anantha Barathi Muthukrishnan ,&nbsp;Guhan Jayaraman ,&nbsp;Lars M. Blank","doi":"10.1016/j.mec.2022.e00202","DOIUrl":null,"url":null,"abstract":"<div><p>Lignin is a ubiquitously available and sustainable feedstock that is underused as its depolymerization yields a range of aromatic monomers that are challenging substrates for microbes. In this study, we investigated the growth of <em>Pseudomonas taiwanensis</em> VLB120 on biomass-derived aromatics, namely, 4-coumarate, ferulate, 4-hydroxybenzoate, and vanillate. The wild type strain was not able to grow on 4-coumarate and ferulate. After integration of catabolic genes for breakdown of 4-coumarate and ferulate, the metabolically engineered strain was able to grow on these aromatics. Further, the specific growth rate of the strain was enhanced up to 3-fold using adaptive laboratory evolution, resulting in increased tolerance towards 4-coumarate and ferulate. Whole-genome sequencing highlighted several different mutations mainly in two genes. The first gene was <em>actP</em>, coding for a cation/acetate symporter, and the other gene was <em>paaA</em> coding for a phenyl acetyl-CoA oxygenase. The evolved strain was further engineered for rhamnolipid production. Among the biomass-derived aromatics investigated, 4-coumarate and ferulate were promising substrates for product synthesis. With 4-coumarate as the sole carbon source, a yield of 0.27 (Cmol<sub>rhl</sub>/Cmol<sub>4-coumarate</sub>) was achieved, corresponding to 28% of the theoretical yield. Ferulate enabled a yield of about 0.22 (Cmol<sub>rhl</sub>/Cmol<sub>ferulate</sub>), representing 42% of the theoretical yield. Overall, this study demonstrates the use of biomass-derived aromatics as novel carbon sources for rhamnolipid biosynthesis.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030122000116/pdfft?md5=29575c540fc6b7e0e6bf633a82266d60&pid=1-s2.0-S2214030122000116-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Metabolic engineering of Pseudomonas taiwanensis VLB120 for rhamnolipid biosynthesis from biomass-derived aromatics\",\"authors\":\"Vaishnavi Sivapuratharasan ,&nbsp;Christoph Lenzen ,&nbsp;Carina Michel ,&nbsp;Anantha Barathi Muthukrishnan ,&nbsp;Guhan Jayaraman ,&nbsp;Lars M. Blank\",\"doi\":\"10.1016/j.mec.2022.e00202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lignin is a ubiquitously available and sustainable feedstock that is underused as its depolymerization yields a range of aromatic monomers that are challenging substrates for microbes. In this study, we investigated the growth of <em>Pseudomonas taiwanensis</em> VLB120 on biomass-derived aromatics, namely, 4-coumarate, ferulate, 4-hydroxybenzoate, and vanillate. The wild type strain was not able to grow on 4-coumarate and ferulate. After integration of catabolic genes for breakdown of 4-coumarate and ferulate, the metabolically engineered strain was able to grow on these aromatics. Further, the specific growth rate of the strain was enhanced up to 3-fold using adaptive laboratory evolution, resulting in increased tolerance towards 4-coumarate and ferulate. Whole-genome sequencing highlighted several different mutations mainly in two genes. The first gene was <em>actP</em>, coding for a cation/acetate symporter, and the other gene was <em>paaA</em> coding for a phenyl acetyl-CoA oxygenase. The evolved strain was further engineered for rhamnolipid production. Among the biomass-derived aromatics investigated, 4-coumarate and ferulate were promising substrates for product synthesis. With 4-coumarate as the sole carbon source, a yield of 0.27 (Cmol<sub>rhl</sub>/Cmol<sub>4-coumarate</sub>) was achieved, corresponding to 28% of the theoretical yield. Ferulate enabled a yield of about 0.22 (Cmol<sub>rhl</sub>/Cmol<sub>ferulate</sub>), representing 42% of the theoretical yield. Overall, this study demonstrates the use of biomass-derived aromatics as novel carbon sources for rhamnolipid biosynthesis.</p></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214030122000116/pdfft?md5=29575c540fc6b7e0e6bf633a82266d60&pid=1-s2.0-S2214030122000116-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214030122000116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030122000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

木质素是一种普遍可用和可持续的原料,由于其解聚产生一系列芳香单体,这些单体对微生物来说是具有挑战性的底物,因此未得到充分利用。本研究研究台湾假单胞菌VLB120在4-香豆酸酯、阿魏酸酯、4-羟基苯甲酸酯和香草酸酯等生物质芳香烃上的生长情况。野生型菌株不能在4-香豆酸盐和阿魏酸盐上生长。在整合了分解4-香豆酸酯和阿魏酸酯的分解代谢基因后,代谢工程菌株能够在这些芳香化合物上生长。此外,通过适应性实验室进化,该菌株的特定生长速率提高了3倍,从而增加了对4-香豆酸盐和阿魏酸盐的耐受性。全基因组测序强调了主要在两个基因中的几种不同突变。第一个基因是actP,编码一个阳离子/乙酸同调子,另一个基因是paaA,编码一个苯基乙酰辅酶a加氧酶。进化后的菌株进一步用于鼠李糖脂的生产。在研究的生物质衍生芳烃中,4-香豆酸酯和阿魏酸酯是有前景的合成底物。以4-香豆酸酯为唯一碳源,产率为0.27 (Cmolrhl/ cmol4 -香豆酸酯),相当于理论产率的28%。阿魏酸盐的产率约为0.22 (Cmolrhl/Cmolferulate),占理论产率的42%。总之,本研究证明了利用生物质衍生的芳烃作为鼠李糖脂生物合成的新型碳源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolic engineering of Pseudomonas taiwanensis VLB120 for rhamnolipid biosynthesis from biomass-derived aromatics

Lignin is a ubiquitously available and sustainable feedstock that is underused as its depolymerization yields a range of aromatic monomers that are challenging substrates for microbes. In this study, we investigated the growth of Pseudomonas taiwanensis VLB120 on biomass-derived aromatics, namely, 4-coumarate, ferulate, 4-hydroxybenzoate, and vanillate. The wild type strain was not able to grow on 4-coumarate and ferulate. After integration of catabolic genes for breakdown of 4-coumarate and ferulate, the metabolically engineered strain was able to grow on these aromatics. Further, the specific growth rate of the strain was enhanced up to 3-fold using adaptive laboratory evolution, resulting in increased tolerance towards 4-coumarate and ferulate. Whole-genome sequencing highlighted several different mutations mainly in two genes. The first gene was actP, coding for a cation/acetate symporter, and the other gene was paaA coding for a phenyl acetyl-CoA oxygenase. The evolved strain was further engineered for rhamnolipid production. Among the biomass-derived aromatics investigated, 4-coumarate and ferulate were promising substrates for product synthesis. With 4-coumarate as the sole carbon source, a yield of 0.27 (Cmolrhl/Cmol4-coumarate) was achieved, corresponding to 28% of the theoretical yield. Ferulate enabled a yield of about 0.22 (Cmolrhl/Cmolferulate), representing 42% of the theoretical yield. Overall, this study demonstrates the use of biomass-derived aromatics as novel carbon sources for rhamnolipid biosynthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic Engineering Communications
Metabolic Engineering Communications Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
13.30
自引率
1.90%
发文量
22
审稿时长
18 weeks
期刊介绍: Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.
期刊最新文献
Metabolic engineering of Acinetobacter baylyi ADP1 for naringenin production PEZy-miner: An artificial intelligence driven approach for the discovery of plastic-degrading enzyme candidates Production of (R)-citramalate by engineered Saccharomyces cerevisiae Engineering thioesterase as a driving force for novel itaconate production via its degradation scheme A comparative analysis of NADPH supply strategies in Saccharomyces cerevisiae: Production of d-xylitol from d-xylose as a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1