用瞬态光谱和连续变化方法鉴定天然配体和氟嘧啶与人胸腺苷酸合成酶结合的差异

Takita Felder , R.Bruce Dunlap , Daniel Dix , Trent Spencer
{"title":"用瞬态光谱和连续变化方法鉴定天然配体和氟嘧啶与人胸腺苷酸合成酶结合的差异","authors":"Takita Felder ,&nbsp;R.Bruce Dunlap ,&nbsp;Daniel Dix ,&nbsp;Trent Spencer","doi":"10.1016/S0167-4838(02)00289-3","DOIUrl":null,"url":null,"abstract":"<div><p>Thymidylate synthase (TS) is a central target for the design of chemotherapeutic agents due to its vital role in DNA synthesis. Structural studies of binary complexes between <em>Escherichia coli</em> TS and various nucleotides suggest the chemotherapeutic agent FdUMP and the natural ligand dUMP bind similarly. We show, however, that FdUMP binding to human TS yields a substantially greater decrease in fluorescence than does dUMP. Because the difference in quenching due to ligand binding was approximately two-fold and this difference was not seen when using ecTS, the intriguing result indicated a significant difference in the mode of FdUMP binding to the human enzyme. We compared the binding affinities of dUMP, FdUMP, and TMP to TS from both species and found no significant differences for the individual ligands. Because binding affinities were not different among the ligands, the method of continuous variation was employed to determine binding stoichiometry. Similar to that found for dUMP binding to human and ecTS, FdUMP displayed single site occupancy with both enzymes. These results show that nucleotide binding differences exist for FdUMP and dUMP binding to the human enzyme. The observed differences are not due to differences in stoichiometry or ligand affinity. Therefore, although the crystal structure of human TS with various nucleotide ligands has not been solved, these results show that the differences observed using fluorescence methods result from as yet unidentified differential interactions between the human enzyme and nucleotide ligands.</p></div>","PeriodicalId":100166,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0167-4838(02)00289-3","citationCount":"8","resultStr":"{\"title\":\"Differences in natural ligand and fluoropyrimidine binding to human thymidylate synthase identified by transient-state spectroscopic and continuous variation methods\",\"authors\":\"Takita Felder ,&nbsp;R.Bruce Dunlap ,&nbsp;Daniel Dix ,&nbsp;Trent Spencer\",\"doi\":\"10.1016/S0167-4838(02)00289-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thymidylate synthase (TS) is a central target for the design of chemotherapeutic agents due to its vital role in DNA synthesis. Structural studies of binary complexes between <em>Escherichia coli</em> TS and various nucleotides suggest the chemotherapeutic agent FdUMP and the natural ligand dUMP bind similarly. We show, however, that FdUMP binding to human TS yields a substantially greater decrease in fluorescence than does dUMP. Because the difference in quenching due to ligand binding was approximately two-fold and this difference was not seen when using ecTS, the intriguing result indicated a significant difference in the mode of FdUMP binding to the human enzyme. We compared the binding affinities of dUMP, FdUMP, and TMP to TS from both species and found no significant differences for the individual ligands. Because binding affinities were not different among the ligands, the method of continuous variation was employed to determine binding stoichiometry. Similar to that found for dUMP binding to human and ecTS, FdUMP displayed single site occupancy with both enzymes. These results show that nucleotide binding differences exist for FdUMP and dUMP binding to the human enzyme. The observed differences are not due to differences in stoichiometry or ligand affinity. Therefore, although the crystal structure of human TS with various nucleotide ligands has not been solved, these results show that the differences observed using fluorescence methods result from as yet unidentified differential interactions between the human enzyme and nucleotide ligands.</p></div>\",\"PeriodicalId\":100166,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0167-4838(02)00289-3\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167483802002893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167483802002893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

胸苷酸合成酶(TS)由于其在DNA合成中的重要作用而成为化疗药物设计的中心靶点。对大肠杆菌TS与多种核苷酸之间二元配合物的结构研究表明,化疗药物FdUMP与天然配体dUMP结合相似。然而,我们发现,与dUMP相比,FdUMP与人类TS结合产生的荧光减少要大得多。由于配体结合导致的猝灭差异约为两倍,而使用ecTS时未观察到这种差异,因此有趣的结果表明FdUMP与人酶结合的模式存在显着差异。我们比较了这两个物种的dUMP、FdUMP和TMP与TS的结合亲和力,发现单个配体之间没有显著差异。由于配体之间的结合亲和性没有差异,因此采用连续变化法确定结合化学计量。与dUMP与human和ecTS结合的结果相似,FdUMP与这两种酶均显示单位点占用。这些结果表明,FdUMP和dUMP与人酶的核苷酸结合存在差异。观察到的差异不是由于化学计量或配体亲和力的差异。因此,尽管人类TS与各种核苷酸配体的晶体结构尚未得到解决,但这些结果表明,使用荧光方法观察到的差异是由于人类酶与核苷酸配体之间尚未确定的差异相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differences in natural ligand and fluoropyrimidine binding to human thymidylate synthase identified by transient-state spectroscopic and continuous variation methods

Thymidylate synthase (TS) is a central target for the design of chemotherapeutic agents due to its vital role in DNA synthesis. Structural studies of binary complexes between Escherichia coli TS and various nucleotides suggest the chemotherapeutic agent FdUMP and the natural ligand dUMP bind similarly. We show, however, that FdUMP binding to human TS yields a substantially greater decrease in fluorescence than does dUMP. Because the difference in quenching due to ligand binding was approximately two-fold and this difference was not seen when using ecTS, the intriguing result indicated a significant difference in the mode of FdUMP binding to the human enzyme. We compared the binding affinities of dUMP, FdUMP, and TMP to TS from both species and found no significant differences for the individual ligands. Because binding affinities were not different among the ligands, the method of continuous variation was employed to determine binding stoichiometry. Similar to that found for dUMP binding to human and ecTS, FdUMP displayed single site occupancy with both enzymes. These results show that nucleotide binding differences exist for FdUMP and dUMP binding to the human enzyme. The observed differences are not due to differences in stoichiometry or ligand affinity. Therefore, although the crystal structure of human TS with various nucleotide ligands has not been solved, these results show that the differences observed using fluorescence methods result from as yet unidentified differential interactions between the human enzyme and nucleotide ligands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-molecular-weight protein hydrodynamics studied with a long-lifetime metal-ligand complex Structural basis for development of cathepsin B-specific noncovalent-type inhibitor: crystal structure of cathepsin B–E64c complex The role of β-strand 5A of plasminogen activator inhibitor-1 in regulation of its latency transition and inhibitory activity by vitronectin Yeast cytochrome c peroxidase: mechanistic studies via protein engineering Butyrylcholinesterase-catalyzed hydrolysis of N-methylindoxyl acetate: analysis of volume changes upon reaction and hysteretic behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1