Ravo Tokiniaina Ranaivoson, R. Andriambololona, Rakotoson Hanitriarivo
{"title":"与线性正则变换相关的不变二次算子","authors":"Ravo Tokiniaina Ranaivoson, R. Andriambololona, Rakotoson Hanitriarivo","doi":"10.21203/RS.3.RS-174871/V1","DOIUrl":null,"url":null,"abstract":"The main purpose of this work is to identify the general quadratic operator which is invariant under the action of Linear Canonical Transformations (LCTs). LCTs are known in signal processing and optics as the transformations which generalize certain useful integral transforms. In quantum theory, they can be identified as the linear transformations which keep invariant the canonical commutation relations characterizing the coordinates and momenta operators. In this paper, LCTs corresponding to a general pseudo-Euclidian space are considered. Explicit calculations are performed for the monodimensional case to identify the corresponding LCT invariant operator then multidimensional generalizations of the obtained results are deduced. It was noticed that the introduction of a variance-covariance matrix, of coordinate and momenta operators, and a pseudo-orthogonal representation of LCTs facilitate the identification of the invariant quadratic operator. According to the calculations carried out, the LCT invariant operator is a second order polynomial of the coordinates and momenta operators. The coefficients of this polynomial depend on the mean values and the statistical variances-covariances of these coordinates and momenta operators themselves. The eigenstates of the LCT invariant operator are also identified with it and some of the main possible applications of the obtained results are discussed.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"16 9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant quadratic operator associated with Linear Canonical Transformations\",\"authors\":\"Ravo Tokiniaina Ranaivoson, R. Andriambololona, Rakotoson Hanitriarivo\",\"doi\":\"10.21203/RS.3.RS-174871/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this work is to identify the general quadratic operator which is invariant under the action of Linear Canonical Transformations (LCTs). LCTs are known in signal processing and optics as the transformations which generalize certain useful integral transforms. In quantum theory, they can be identified as the linear transformations which keep invariant the canonical commutation relations characterizing the coordinates and momenta operators. In this paper, LCTs corresponding to a general pseudo-Euclidian space are considered. Explicit calculations are performed for the monodimensional case to identify the corresponding LCT invariant operator then multidimensional generalizations of the obtained results are deduced. It was noticed that the introduction of a variance-covariance matrix, of coordinate and momenta operators, and a pseudo-orthogonal representation of LCTs facilitate the identification of the invariant quadratic operator. According to the calculations carried out, the LCT invariant operator is a second order polynomial of the coordinates and momenta operators. The coefficients of this polynomial depend on the mean values and the statistical variances-covariances of these coordinates and momenta operators themselves. The eigenstates of the LCT invariant operator are also identified with it and some of the main possible applications of the obtained results are discussed.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":\"16 9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-174871/V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-174871/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Invariant quadratic operator associated with Linear Canonical Transformations
The main purpose of this work is to identify the general quadratic operator which is invariant under the action of Linear Canonical Transformations (LCTs). LCTs are known in signal processing and optics as the transformations which generalize certain useful integral transforms. In quantum theory, they can be identified as the linear transformations which keep invariant the canonical commutation relations characterizing the coordinates and momenta operators. In this paper, LCTs corresponding to a general pseudo-Euclidian space are considered. Explicit calculations are performed for the monodimensional case to identify the corresponding LCT invariant operator then multidimensional generalizations of the obtained results are deduced. It was noticed that the introduction of a variance-covariance matrix, of coordinate and momenta operators, and a pseudo-orthogonal representation of LCTs facilitate the identification of the invariant quadratic operator. According to the calculations carried out, the LCT invariant operator is a second order polynomial of the coordinates and momenta operators. The coefficients of this polynomial depend on the mean values and the statistical variances-covariances of these coordinates and momenta operators themselves. The eigenstates of the LCT invariant operator are also identified with it and some of the main possible applications of the obtained results are discussed.