一类非线性扩散过程参数估计的渐近性态

Chengliang Zhu
{"title":"一类非线性扩散过程参数估计的渐近性态","authors":"Chengliang Zhu","doi":"10.22436/jnsa.011.06.05","DOIUrl":null,"url":null,"abstract":"In this paper, a stochastic process, which is a class of nonhomogeneous diffusion process from the perspective of the corresponding nonlinear stochastic differential equation is studied. The parameter included in the drift term are estimated by sequential maximum likelihood methodology. The sequential estimators are proved to be closed, unbiased, strongly consistent, normally distributed, and optimal in the mean square sense.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"1 1","pages":"778-784"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of parametric estimation for a class of nonlinear diffusion process\",\"authors\":\"Chengliang Zhu\",\"doi\":\"10.22436/jnsa.011.06.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a stochastic process, which is a class of nonhomogeneous diffusion process from the perspective of the corresponding nonlinear stochastic differential equation is studied. The parameter included in the drift term are estimated by sequential maximum likelihood methodology. The sequential estimators are proved to be closed, unbiased, strongly consistent, normally distributed, and optimal in the mean square sense.\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"1 1\",\"pages\":\"778-784\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jnsa.011.06.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jnsa.011.06.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文从相应的非线性随机微分方程的角度研究了一类非齐次扩散过程的随机过程。采用序贯极大似然法对漂移项中包含的参数进行估计。证明了序列估计量是封闭的、无偏的、强一致的、正态分布的,并且在均方意义上是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotic behavior of parametric estimation for a class of nonlinear diffusion process
In this paper, a stochastic process, which is a class of nonhomogeneous diffusion process from the perspective of the corresponding nonlinear stochastic differential equation is studied. The parameter included in the drift term are estimated by sequential maximum likelihood methodology. The sequential estimators are proved to be closed, unbiased, strongly consistent, normally distributed, and optimal in the mean square sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A note on set valued maps on admissible extension type spaces Third Hankel determinant for q -analogue of symmetric starlike connected to q -exponential function Viscosity approximation method for a variational problem Model order reduction of tumor growth model Dynamic behaviour of a single-species nonlinear fishery model with infection: the role of fishing tax and time-dependent market price
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1