Ivana Cvetković, M. Stojicevic, B. Popkonstantinović
{"title":"建模,运动研究,和计算机模拟的托马斯·恩肖的计时器扣擒纵机构","authors":"Ivana Cvetković, M. Stojicevic, B. Popkonstantinović","doi":"10.5772/INTECHOPEN.79939","DOIUrl":null,"url":null,"abstract":"The escapement is a very important horological invention and it is commonly used in theory of clocks and chronometers. It transfers energy to the timekeeping element and allows the number of its oscillations to be counted. The chronometer detent escape- ment used in marine chronometers was modified and simplified by Thomas Earnshaw, English renowned watchmaker, in order to make it available to the public. This chapter deals with 3D modeling and assembling of all escapement parts in SolidWorks, as well as constructive geometry of mechanism and computer simulation. The whole process has been accomplished in program “SolidWorks 2016,” where all parts are assembled by using standard mates since this approach is suitable for motion and dynamical analysis. Generated simulation results are very close to the real ones, thereby using computation ally strong kinematic solvers.","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":"20 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling, Motion Study, and Computer Simulation of Thomas Earnshaw’s Chronometer Detent Escapement Mechanism\",\"authors\":\"Ivana Cvetković, M. Stojicevic, B. Popkonstantinović\",\"doi\":\"10.5772/INTECHOPEN.79939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escapement is a very important horological invention and it is commonly used in theory of clocks and chronometers. It transfers energy to the timekeeping element and allows the number of its oscillations to be counted. The chronometer detent escape- ment used in marine chronometers was modified and simplified by Thomas Earnshaw, English renowned watchmaker, in order to make it available to the public. This chapter deals with 3D modeling and assembling of all escapement parts in SolidWorks, as well as constructive geometry of mechanism and computer simulation. The whole process has been accomplished in program “SolidWorks 2016,” where all parts are assembled by using standard mates since this approach is suitable for motion and dynamical analysis. Generated simulation results are very close to the real ones, thereby using computation ally strong kinematic solvers.\",\"PeriodicalId\":50943,\"journal\":{\"name\":\"ACM Transactions on Modeling and Computer Simulation\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Computer Simulation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.79939\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79939","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Modeling, Motion Study, and Computer Simulation of Thomas Earnshaw’s Chronometer Detent Escapement Mechanism
The escapement is a very important horological invention and it is commonly used in theory of clocks and chronometers. It transfers energy to the timekeeping element and allows the number of its oscillations to be counted. The chronometer detent escape- ment used in marine chronometers was modified and simplified by Thomas Earnshaw, English renowned watchmaker, in order to make it available to the public. This chapter deals with 3D modeling and assembling of all escapement parts in SolidWorks, as well as constructive geometry of mechanism and computer simulation. The whole process has been accomplished in program “SolidWorks 2016,” where all parts are assembled by using standard mates since this approach is suitable for motion and dynamical analysis. Generated simulation results are very close to the real ones, thereby using computation ally strong kinematic solvers.
期刊介绍:
The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods.
The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.