{"title":"事件驱动架构的性能模型","authors":"C. Woodside","doi":"10.1145/3447545.3451203","DOIUrl":null,"url":null,"abstract":"Event-driven architecture (EDAs) improves scalability by combining stateless servers and asynchronous interactions. Models to predict the performance of pure EDA systems are relatively easy to make, systems with a combination of event-driven components and legacy components with blocking service requests (synchronous interactions) require special treatment. Layered queueing was developed for such systems, and this work describes a method for combining event-driven behaviour and synchronous behaviour in a layered queueing model. The performance constraints created by the legacy components can be explored to guide decisions regarding converting them, or reconfiguring them, when the system is scaled.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Models of Event-Driven Architectures\",\"authors\":\"C. Woodside\",\"doi\":\"10.1145/3447545.3451203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event-driven architecture (EDAs) improves scalability by combining stateless servers and asynchronous interactions. Models to predict the performance of pure EDA systems are relatively easy to make, systems with a combination of event-driven components and legacy components with blocking service requests (synchronous interactions) require special treatment. Layered queueing was developed for such systems, and this work describes a method for combining event-driven behaviour and synchronous behaviour in a layered queueing model. The performance constraints created by the legacy components can be explored to guide decisions regarding converting them, or reconfiguring them, when the system is scaled.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447545.3451203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447545.3451203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Event-driven architecture (EDAs) improves scalability by combining stateless servers and asynchronous interactions. Models to predict the performance of pure EDA systems are relatively easy to make, systems with a combination of event-driven components and legacy components with blocking service requests (synchronous interactions) require special treatment. Layered queueing was developed for such systems, and this work describes a method for combining event-driven behaviour and synchronous behaviour in a layered queueing model. The performance constraints created by the legacy components can be explored to guide decisions regarding converting them, or reconfiguring them, when the system is scaled.