基因组编辑兔,神经系统疾病的潜在替代模型

Zhongtian Zhang, Yuning Song, L. Lai, Zhanjun Li
{"title":"基因组编辑兔,神经系统疾病的潜在替代模型","authors":"Zhongtian Zhang, Yuning Song, L. Lai, Zhanjun Li","doi":"10.20517/and.2022.15","DOIUrl":null,"url":null,"abstract":"Animal models have great importance in the research of human neurodegenerative diseases due to their value in symptom mimicking, mechanism investigation, and preclinical tests. Although non-human primate and large animal models have good performance in disease modeling due to their high maintenance cost and critical ethical standards, rodent models are commonly used. Rodent models have been successfully applied in modeling many neurological diseases; however, their genetic background, neuroanatomical features, and nervous system development are different from those of humans. Moreover, the short lifespan and small body size of rodent models also limit the monitoring of disease progression and observation of clinical symptoms in studying neuronal disorders that are late-onset or have a long course of progression. In comparison with rodents, rabbits are phylogenetically closer to humans and have closer similarities to humans in brain development, thus are an alternate animal model for human neurological diseases.","PeriodicalId":93251,"journal":{"name":"Ageing and neurodegenerative diseases","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genome-edited rabbit, a prospective alternative model for neurological diseases\",\"authors\":\"Zhongtian Zhang, Yuning Song, L. Lai, Zhanjun Li\",\"doi\":\"10.20517/and.2022.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Animal models have great importance in the research of human neurodegenerative diseases due to their value in symptom mimicking, mechanism investigation, and preclinical tests. Although non-human primate and large animal models have good performance in disease modeling due to their high maintenance cost and critical ethical standards, rodent models are commonly used. Rodent models have been successfully applied in modeling many neurological diseases; however, their genetic background, neuroanatomical features, and nervous system development are different from those of humans. Moreover, the short lifespan and small body size of rodent models also limit the monitoring of disease progression and observation of clinical symptoms in studying neuronal disorders that are late-onset or have a long course of progression. In comparison with rodents, rabbits are phylogenetically closer to humans and have closer similarities to humans in brain development, thus are an alternate animal model for human neurological diseases.\",\"PeriodicalId\":93251,\"journal\":{\"name\":\"Ageing and neurodegenerative diseases\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing and neurodegenerative diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/and.2022.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing and neurodegenerative diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/and.2022.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

动物模型在人类神经退行性疾病的症状模拟、机制研究和临床前试验等方面具有重要的应用价值。尽管非人类灵长类动物和大型动物模型由于其较高的维护成本和严格的伦理标准而在疾病建模中具有良好的性能,但啮齿类动物模型是常用的。啮齿类动物模型已成功地应用于许多神经系统疾病的建模;然而,它们的遗传背景、神经解剖学特征和神经系统发育与人类不同。此外,啮齿类动物模型的寿命短、体型小,也限制了在研究迟发性或进展过程较长的神经元疾病时对疾病进展的监测和临床症状的观察。与啮齿类动物相比,兔子在系统发育上更接近人类,在大脑发育上与人类更相似,因此是人类神经系统疾病的替代动物模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-edited rabbit, a prospective alternative model for neurological diseases
Animal models have great importance in the research of human neurodegenerative diseases due to their value in symptom mimicking, mechanism investigation, and preclinical tests. Although non-human primate and large animal models have good performance in disease modeling due to their high maintenance cost and critical ethical standards, rodent models are commonly used. Rodent models have been successfully applied in modeling many neurological diseases; however, their genetic background, neuroanatomical features, and nervous system development are different from those of humans. Moreover, the short lifespan and small body size of rodent models also limit the monitoring of disease progression and observation of clinical symptoms in studying neuronal disorders that are late-onset or have a long course of progression. In comparison with rodents, rabbits are phylogenetically closer to humans and have closer similarities to humans in brain development, thus are an alternate animal model for human neurological diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advantages and differences among various animal models of Huntington’s disease Age-related energetic reprogramming in glial cells: possible correlations with Parkinson’s disease Fibril-forming motif of non-expanded ataxin-3 revealed by scanning proline mutagenesis Automatically targeting the dorsolateral subthalamic nucleus for functional connectivity-guided rTMS therapy Re-energising the brain: glucose metabolism, Tau protein and memory in ageing and dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1