使用硬件/软件协同设计加速实时计算机视觉应用

Anirudh B.K., Vivek Venkatraman, Abhishek Kumar, Sumam David S.
{"title":"使用硬件/软件协同设计加速实时计算机视觉应用","authors":"Anirudh B.K., Vivek Venkatraman, Abhishek Kumar, Sumam David S.","doi":"10.1109/COMPTELIX.2017.8004013","DOIUrl":null,"url":null,"abstract":"Video processing applications have become increasingly difficult to implement on hardware, owing to the complex computer vision algorithms involved. This paper presents a real-time video processing architecture based on hardware/software co-design that improves execution speed and reduces the time to market of applications. We have implemented this framework for handwritten digit recognition on the Zybo Zynq-7000 ARM/FPGA SoC using Vivado High Level Synthesis (HLS) and Xillybus tools. Histogram of Oriented Gradients (HOG) feature extraction algorithm has been optimised for hardware execution and acceleration techniques have been applied on Vivado HLS to achieve a speed up of 38.89 for the HOG algorithm and recognition accuracy of 95.6%. Low precision arithmetic along with our approximations for costly functions, produced this significant gain in throughput by reducing 90% of the hardware resources required with just a marginal accuracy reduction by 1%. An overall performance improvement of 77% is obtained through hardware/software co-design over software execution. The framework identified digits seamlessly in a real-time video stream at 30 frames per second and enabled high frame rate video processing.","PeriodicalId":6917,"journal":{"name":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","volume":"36 1","pages":"458-463"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Accelerating real-time computer vision applications using HW/SW co-design\",\"authors\":\"Anirudh B.K., Vivek Venkatraman, Abhishek Kumar, Sumam David S.\",\"doi\":\"10.1109/COMPTELIX.2017.8004013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video processing applications have become increasingly difficult to implement on hardware, owing to the complex computer vision algorithms involved. This paper presents a real-time video processing architecture based on hardware/software co-design that improves execution speed and reduces the time to market of applications. We have implemented this framework for handwritten digit recognition on the Zybo Zynq-7000 ARM/FPGA SoC using Vivado High Level Synthesis (HLS) and Xillybus tools. Histogram of Oriented Gradients (HOG) feature extraction algorithm has been optimised for hardware execution and acceleration techniques have been applied on Vivado HLS to achieve a speed up of 38.89 for the HOG algorithm and recognition accuracy of 95.6%. Low precision arithmetic along with our approximations for costly functions, produced this significant gain in throughput by reducing 90% of the hardware resources required with just a marginal accuracy reduction by 1%. An overall performance improvement of 77% is obtained through hardware/software co-design over software execution. The framework identified digits seamlessly in a real-time video stream at 30 frames per second and enabled high frame rate video processing.\",\"PeriodicalId\":6917,\"journal\":{\"name\":\"2017 International Conference on Computer, Communications and Electronics (Comptelix)\",\"volume\":\"36 1\",\"pages\":\"458-463\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer, Communications and Electronics (Comptelix)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPTELIX.2017.8004013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPTELIX.2017.8004013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

由于涉及复杂的计算机视觉算法,视频处理应用越来越难以在硬件上实现。本文提出了一种基于软硬件协同设计的实时视频处理体系结构,提高了执行速度,缩短了应用程序的上市时间。我们使用Vivado High Level Synthesis (HLS)和Xillybus工具在Zybo Zynq-7000 ARM/FPGA SoC上实现了手写数字识别框架。优化了面向梯度直方图(Histogram of Oriented Gradients, HOG)特征提取算法的硬件执行,并在Vivado HLS上应用了加速技术,实现了HOG算法的加速38.89,识别准确率95.6%。低精度算法以及我们对昂贵函数的近似,通过减少所需的90%的硬件资源而仅减少1%的精度,从而产生了吞吐量的显著增加。通过硬件/软件协同设计而不是软件执行,总体性能提高了77%。该框架以每秒30帧的速度在实时视频流中无缝识别数字,并实现高帧率视频处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating real-time computer vision applications using HW/SW co-design
Video processing applications have become increasingly difficult to implement on hardware, owing to the complex computer vision algorithms involved. This paper presents a real-time video processing architecture based on hardware/software co-design that improves execution speed and reduces the time to market of applications. We have implemented this framework for handwritten digit recognition on the Zybo Zynq-7000 ARM/FPGA SoC using Vivado High Level Synthesis (HLS) and Xillybus tools. Histogram of Oriented Gradients (HOG) feature extraction algorithm has been optimised for hardware execution and acceleration techniques have been applied on Vivado HLS to achieve a speed up of 38.89 for the HOG algorithm and recognition accuracy of 95.6%. Low precision arithmetic along with our approximations for costly functions, produced this significant gain in throughput by reducing 90% of the hardware resources required with just a marginal accuracy reduction by 1%. An overall performance improvement of 77% is obtained through hardware/software co-design over software execution. The framework identified digits seamlessly in a real-time video stream at 30 frames per second and enabled high frame rate video processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of mental tasks using S-transform based fractal features Gauge Theory and spontaneous breaking of symmetry in superconductors Stable type-2 fuzzy logic control of TCSC to improve damping of power systems An analysis on broadband SHG using TIR-QPM in a multi-tapered slab of ZnSe in mid-IR region Analytical study of SINR for OFDMA Uplink in presence of Transceiver Phase Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1