欧式期权定价中目标密度与风险中性密度的差异

ORiON Pub Date : 2019-06-28 DOI:10.5784/35-1-647
I. Visagie, G. Grobler
{"title":"欧式期权定价中目标密度与风险中性密度的差异","authors":"I. Visagie, G. Grobler","doi":"10.5784/35-1-647","DOIUrl":null,"url":null,"abstract":"A technique known as calibration is often used when a given option pricing model is fitted to observed financial data. This entails choosing the parameters of the model so as to minimise some discrepancy measure between the observed option prices and the prices calculated under the model in question. This procedure does not take the historical values of the underlying asset into account. In this paper, the density function of the log-returns obtained using the calibration procedure is compared to a density estimate of the observed historical log-returns. Three models within the class of geometric Lévy process models are fitted to observed data; the Black-Scholes model as well as the geometric normal inverse Gaussian and Meixner process models. The numerical results obtained show a surprisingly large discrepancy between the resulting densities when using the latter two models. An adaptation of the calibration methodology is also proposed based on both option price data and the observed historical log-returns of the underlying asset. The implementation of this methodology limits the discrepancy between the densities in question.","PeriodicalId":30587,"journal":{"name":"ORiON","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the discrepancy between the objective and risk neutral densities in the pricing of European options\",\"authors\":\"I. Visagie, G. Grobler\",\"doi\":\"10.5784/35-1-647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique known as calibration is often used when a given option pricing model is fitted to observed financial data. This entails choosing the parameters of the model so as to minimise some discrepancy measure between the observed option prices and the prices calculated under the model in question. This procedure does not take the historical values of the underlying asset into account. In this paper, the density function of the log-returns obtained using the calibration procedure is compared to a density estimate of the observed historical log-returns. Three models within the class of geometric Lévy process models are fitted to observed data; the Black-Scholes model as well as the geometric normal inverse Gaussian and Meixner process models. The numerical results obtained show a surprisingly large discrepancy between the resulting densities when using the latter two models. An adaptation of the calibration methodology is also proposed based on both option price data and the observed historical log-returns of the underlying asset. The implementation of this methodology limits the discrepancy between the densities in question.\",\"PeriodicalId\":30587,\"journal\":{\"name\":\"ORiON\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ORiON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5784/35-1-647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ORiON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5784/35-1-647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当给定的期权定价模型与观察到的财务数据拟合时,通常使用一种称为校准的技术。这需要选择模型的参数,以便最小化观察到的期权价格与模型下计算的价格之间的一些差异。此程序不考虑相关资产的历史价值。在本文中,使用校准程序获得的对数收益的密度函数与观测到的历史对数收益的密度估计进行了比较。几何lsamvy过程模型类中的三个模型拟合到观测数据;布莱克-斯科尔斯模型以及几何正态反高斯和梅克斯纳过程模型。数值结果表明,采用后两种模型得到的密度之间存在惊人的巨大差异。本文还提出了一种基于期权价格数据和观察到的标的资产的历史对数收益的校准方法。这种方法的实施限制了所讨论密度之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the discrepancy between the objective and risk neutral densities in the pricing of European options
A technique known as calibration is often used when a given option pricing model is fitted to observed financial data. This entails choosing the parameters of the model so as to minimise some discrepancy measure between the observed option prices and the prices calculated under the model in question. This procedure does not take the historical values of the underlying asset into account. In this paper, the density function of the log-returns obtained using the calibration procedure is compared to a density estimate of the observed historical log-returns. Three models within the class of geometric Lévy process models are fitted to observed data; the Black-Scholes model as well as the geometric normal inverse Gaussian and Meixner process models. The numerical results obtained show a surprisingly large discrepancy between the resulting densities when using the latter two models. An adaptation of the calibration methodology is also proposed based on both option price data and the observed historical log-returns of the underlying asset. The implementation of this methodology limits the discrepancy between the densities in question.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
期刊最新文献
Route overlap metrics to batch orders Anomaly detection using autoencoders with network analysis features On the calibration of stochastic volatility models to estimate the real-world measure used in option pricing Celebrating 50-years of OR in South Africa – a Bibliometric Analysis of contributions to International OR Literature Comments: Development of an early career academic supervisor in Statistics - a discussion on a guiding rubric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1