使用应用程序执行日志检测可疑条件语句

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied Computing Review Pub Date : 2023-03-27 DOI:10.1145/3555776.3577722
Sumin Lee, Minho Park, Jiman Hong
{"title":"使用应用程序执行日志检测可疑条件语句","authors":"Sumin Lee, Minho Park, Jiman Hong","doi":"10.1145/3555776.3577722","DOIUrl":null,"url":null,"abstract":"Because1 the logic bomb performs malicious behaviors only within the branch that triggers the malicious behaviors, if the branch can be easily found, malicious behaviors can be detected efficiently. Existing malicious app analysis tools look for branches that trigger malicious behaviors based on static analysis, so if reflection is used in the app, this branch statement cannot be found properly. Therefore, in this paper, we propose an app execution log-based suspicious conditional statement detection tool that can detect suspicious conditional statements even when reflection is used. The proposed detection tool which is implemented on the android-10.0.0_r47 version of AOSP(Android Open Source Project) can check the branch statement and information about called method while the app is executing, including the method called by reflection. Also, since suspicious conditional statements are detected by checking the method call flow related to branch statements in the execution log, there is no need to examine all branch statements in the app. Experimental results show that the proposed detection tool can detect suspicious conditional statements regardless of the use of reflection.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting Suspicious Conditional Statement using App Execution Log\",\"authors\":\"Sumin Lee, Minho Park, Jiman Hong\",\"doi\":\"10.1145/3555776.3577722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because1 the logic bomb performs malicious behaviors only within the branch that triggers the malicious behaviors, if the branch can be easily found, malicious behaviors can be detected efficiently. Existing malicious app analysis tools look for branches that trigger malicious behaviors based on static analysis, so if reflection is used in the app, this branch statement cannot be found properly. Therefore, in this paper, we propose an app execution log-based suspicious conditional statement detection tool that can detect suspicious conditional statements even when reflection is used. The proposed detection tool which is implemented on the android-10.0.0_r47 version of AOSP(Android Open Source Project) can check the branch statement and information about called method while the app is executing, including the method called by reflection. Also, since suspicious conditional statements are detected by checking the method call flow related to branch statements in the execution log, there is no need to examine all branch statements in the app. Experimental results show that the proposed detection tool can detect suspicious conditional statements regardless of the use of reflection.\",\"PeriodicalId\":42971,\"journal\":{\"name\":\"Applied Computing Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555776.3577722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

因为逻辑炸弹只在触发恶意行为的分支内执行恶意行为,所以如果分支很容易被找到,就可以有效地检测出恶意行为。现有的恶意应用分析工具会根据静态分析来查找触发恶意行为的分支,所以如果在应用中使用了反射,则无法正确找到该分支语句。因此,在本文中,我们提出了一种基于应用执行日志的可疑条件语句检测工具,即使使用反射也可以检测到可疑条件语句。本文提出的检测工具在Android -10.0.0_r47版本的AOSP(Android开源项目)上实现,可以在应用程序执行时检查分支语句和被调用方法的信息,包括反射调用的方法。此外,由于可疑条件语句是通过检查执行日志中与分支语句相关的方法调用流来检测的,因此不需要检查应用程序中的所有分支语句。实验结果表明,无论是否使用反射,所提出的检测工具都可以检测到可疑条件语句。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Suspicious Conditional Statement using App Execution Log
Because1 the logic bomb performs malicious behaviors only within the branch that triggers the malicious behaviors, if the branch can be easily found, malicious behaviors can be detected efficiently. Existing malicious app analysis tools look for branches that trigger malicious behaviors based on static analysis, so if reflection is used in the app, this branch statement cannot be found properly. Therefore, in this paper, we propose an app execution log-based suspicious conditional statement detection tool that can detect suspicious conditional statements even when reflection is used. The proposed detection tool which is implemented on the android-10.0.0_r47 version of AOSP(Android Open Source Project) can check the branch statement and information about called method while the app is executing, including the method called by reflection. Also, since suspicious conditional statements are detected by checking the method call flow related to branch statements in the execution log, there is no need to examine all branch statements in the app. Experimental results show that the proposed detection tool can detect suspicious conditional statements regardless of the use of reflection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
期刊最新文献
DIWS-LCR-Rot-hop++: A Domain-Independent Word Selector for Cross-Domain Aspect-Based Sentiment Classification Leveraging Semantic Technologies for Collaborative Inference of Threatening IoT Dependencies Relating Optimal Repairs in Ontology Engineering with Contraction Operations in Belief Change Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning Elastic Data Binning: Time-Series Sketching for Time-Domain Astrophysics Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1