L. Zinko, G. Nychyporuk, Oksana Matselko, R. Gladyshevskii
{"title":"在1000℃下,三元体系Hf-Re-Al","authors":"L. Zinko, G. Nychyporuk, Oksana Matselko, R. Gladyshevskii","doi":"10.15330/pcss.24.2.361-366","DOIUrl":null,"url":null,"abstract":"The interaction of the components in the Hf–Re–Al system was investigated by X-ray powder diffraction and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The isothermal section of the phase diagram at 1000 °C was constructed in the full concentration range. A new ternary compound ~Hf5Re2Al2, isostructural with Ti5Ga4 (hP18, P63/mcm), and two extended solid solutions Hf(Re,Al)2 were found.","PeriodicalId":20137,"journal":{"name":"Physics and Chemistry of Solid State","volume":"8 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE The ternary system Hf–Re–Al at 1000 °C\",\"authors\":\"L. Zinko, G. Nychyporuk, Oksana Matselko, R. Gladyshevskii\",\"doi\":\"10.15330/pcss.24.2.361-366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interaction of the components in the Hf–Re–Al system was investigated by X-ray powder diffraction and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The isothermal section of the phase diagram at 1000 °C was constructed in the full concentration range. A new ternary compound ~Hf5Re2Al2, isostructural with Ti5Ga4 (hP18, P63/mcm), and two extended solid solutions Hf(Re,Al)2 were found.\",\"PeriodicalId\":20137,\"journal\":{\"name\":\"Physics and Chemistry of Solid State\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Solid State\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/pcss.24.2.361-366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Solid State","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/pcss.24.2.361-366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The interaction of the components in the Hf–Re–Al system was investigated by X-ray powder diffraction and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The isothermal section of the phase diagram at 1000 °C was constructed in the full concentration range. A new ternary compound ~Hf5Re2Al2, isostructural with Ti5Ga4 (hP18, P63/mcm), and two extended solid solutions Hf(Re,Al)2 were found.