基于床垫传感器生物振动数据的睡眠呼吸暂停综合征检测

Iko Nakari, Akinori Murata, Eiki Kitajima, Hiroyuki Sato, K. Takadama
{"title":"基于床垫传感器生物振动数据的睡眠呼吸暂停综合征检测","authors":"Iko Nakari, Akinori Murata, Eiki Kitajima, Hiroyuki Sato, K. Takadama","doi":"10.1109/SSCI44817.2019.9003156","DOIUrl":null,"url":null,"abstract":"This paper proposes the new Sleep Apnea Syndrome (SAS) detection method based on Random Forest (RF) by estimating WAKE stage (shallow sleep) and analyzing characteristics of biological vibration data at WAKE stage. In particular, the proposed method estimates the WAKE stage from the biological vibration data acquired by the mattress sensor, and detects SAS based on the differences in the distribution of contribution of each frequency to classify the WAKE stage. To investigate the effectiveness of the proposed method, in cooperation with medical institutions, we applied the proposed method to a total of 18 subjects (nine SAS patients and nine healthy subjects). The results derive the following implications: (1) SAS patients have WAKE with small biological vibrations, and the contribution of the corresponding low frequency components is high while the high frequency components, which is corresponded to large biological vibrations, is low contribution; (2) the proposed method could correctly detect SAS with 100% accuracy and non-SAS with 77.8% accuracy.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"50 1","pages":"550-556"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sleep Apnea Syndrome Detection based on Biological Vibration Data from Mattress Sensor\",\"authors\":\"Iko Nakari, Akinori Murata, Eiki Kitajima, Hiroyuki Sato, K. Takadama\",\"doi\":\"10.1109/SSCI44817.2019.9003156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the new Sleep Apnea Syndrome (SAS) detection method based on Random Forest (RF) by estimating WAKE stage (shallow sleep) and analyzing characteristics of biological vibration data at WAKE stage. In particular, the proposed method estimates the WAKE stage from the biological vibration data acquired by the mattress sensor, and detects SAS based on the differences in the distribution of contribution of each frequency to classify the WAKE stage. To investigate the effectiveness of the proposed method, in cooperation with medical institutions, we applied the proposed method to a total of 18 subjects (nine SAS patients and nine healthy subjects). The results derive the following implications: (1) SAS patients have WAKE with small biological vibrations, and the contribution of the corresponding low frequency components is high while the high frequency components, which is corresponded to large biological vibrations, is low contribution; (2) the proposed method could correctly detect SAS with 100% accuracy and non-SAS with 77.8% accuracy.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"50 1\",\"pages\":\"550-556\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9003156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过对浅睡眠阶段的估计,分析浅睡眠阶段生物振动数据的特征,提出了一种基于随机森林(Random Forest, RF)的睡眠呼吸暂停综合征(SAS)检测方法。特别是,该方法根据床垫传感器采集的生物振动数据估计WAKE阶段,并根据各频率贡献分布的差异检测SAS,对WAKE阶段进行分类。为了验证所提出方法的有效性,我们与医疗机构合作,将所提出的方法应用于18名受试者(9名SAS患者和9名健康受试者)。结果表明:(1)SAS患者具有生物振动小的WAKE,相应的低频分量贡献高,而对应较大生物振动的高频分量贡献低;(2)该方法对SAS和non-SAS的检测准确率分别为100%和77.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sleep Apnea Syndrome Detection based on Biological Vibration Data from Mattress Sensor
This paper proposes the new Sleep Apnea Syndrome (SAS) detection method based on Random Forest (RF) by estimating WAKE stage (shallow sleep) and analyzing characteristics of biological vibration data at WAKE stage. In particular, the proposed method estimates the WAKE stage from the biological vibration data acquired by the mattress sensor, and detects SAS based on the differences in the distribution of contribution of each frequency to classify the WAKE stage. To investigate the effectiveness of the proposed method, in cooperation with medical institutions, we applied the proposed method to a total of 18 subjects (nine SAS patients and nine healthy subjects). The results derive the following implications: (1) SAS patients have WAKE with small biological vibrations, and the contribution of the corresponding low frequency components is high while the high frequency components, which is corresponded to large biological vibrations, is low contribution; (2) the proposed method could correctly detect SAS with 100% accuracy and non-SAS with 77.8% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1