基于RSM的AA6061-T6合金浸没搅拌摩擦焊接参数建模与优化

C. Rathinasuriyan, V. Senthil
{"title":"基于RSM的AA6061-T6合金浸没搅拌摩擦焊接参数建模与优化","authors":"C. Rathinasuriyan, V. Senthil","doi":"10.4149/KM_2016_3_297","DOIUrl":null,"url":null,"abstract":"This paper demonstrates submerged friction stir welding (SFSW) of the AA6061-T6 alloy at optimized water head for achieving higher tensile strength. The experiments were conducted based on three factors, three levels, and the Box-Benham design with the full replication technique, which is used to minimize the number of experiments. The three factors considered are the tool rotational speed (rpm), welding speed (mm min−1) and water head (mm). The effect of these factors on the weld of AA6061-T6 was analysed, using response surface methodology (RSM), and a mathematical model was also developed to optimize the submerged friction stir welding process parameters to attain the maximum tensile strength of the joint. The experimental results confirmed the effectiveness of the method. Finally, the temperature distribution and grain size were investigated under the optimized conditions. K e y w o r d s: friction stir welding (FSW), submerged friction stir welding (SFSW), response surface methodology (RSM)","PeriodicalId":18519,"journal":{"name":"Metallic Materials","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Modelling and optimization of submerged friction stir welding parameters for AA6061-T6 alloy using RSM\",\"authors\":\"C. Rathinasuriyan, V. Senthil\",\"doi\":\"10.4149/KM_2016_3_297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates submerged friction stir welding (SFSW) of the AA6061-T6 alloy at optimized water head for achieving higher tensile strength. The experiments were conducted based on three factors, three levels, and the Box-Benham design with the full replication technique, which is used to minimize the number of experiments. The three factors considered are the tool rotational speed (rpm), welding speed (mm min−1) and water head (mm). The effect of these factors on the weld of AA6061-T6 was analysed, using response surface methodology (RSM), and a mathematical model was also developed to optimize the submerged friction stir welding process parameters to attain the maximum tensile strength of the joint. The experimental results confirmed the effectiveness of the method. Finally, the temperature distribution and grain size were investigated under the optimized conditions. K e y w o r d s: friction stir welding (FSW), submerged friction stir welding (SFSW), response surface methodology (RSM)\",\"PeriodicalId\":18519,\"journal\":{\"name\":\"Metallic Materials\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4149/KM_2016_3_297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4149/KM_2016_3_297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

研究了AA6061-T6合金在优化水头下的浸没搅拌摩擦焊接(SFSW)可获得更高的抗拉强度。实验基于三因素、三水平,采用Box-Benham设计,采用全复制技术,尽量减少实验次数。考虑的三个因素是工具转速(rpm),焊接速度(mm min - 1)和水头(mm)。采用响应面法(RSM)分析了这些因素对AA6061-T6焊缝的影响,并建立了优化搅拌摩擦焊工艺参数的数学模型,以获得最大接头抗拉强度。实验结果验证了该方法的有效性。最后,对优化条件下的温度分布和晶粒尺寸进行了研究。介绍了搅拌摩擦焊(FSW)、搅拌浸入式摩擦焊(SFSW)、响应面法(RSM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling and optimization of submerged friction stir welding parameters for AA6061-T6 alloy using RSM
This paper demonstrates submerged friction stir welding (SFSW) of the AA6061-T6 alloy at optimized water head for achieving higher tensile strength. The experiments were conducted based on three factors, three levels, and the Box-Benham design with the full replication technique, which is used to minimize the number of experiments. The three factors considered are the tool rotational speed (rpm), welding speed (mm min−1) and water head (mm). The effect of these factors on the weld of AA6061-T6 was analysed, using response surface methodology (RSM), and a mathematical model was also developed to optimize the submerged friction stir welding process parameters to attain the maximum tensile strength of the joint. The experimental results confirmed the effectiveness of the method. Finally, the temperature distribution and grain size were investigated under the optimized conditions. K e y w o r d s: friction stir welding (FSW), submerged friction stir welding (SFSW), response surface methodology (RSM)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electromagnetic welding of Al-Cu: An investigation on the thickness of sheets The effect of deformation processing on tensile ductility of magnesium alloy AZ31 Investigating the effect of reinforcing particulates on the weight loss and worn surface of compocast AMCs Determination of the thermal properties of Al-Zn-Mg alloy Characterization of tensile strength and impact toughness of autogenous PCGTA weldments of aeronautical steel and austenitic stainless steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1