{"title":"区域光源照明矢量:两种计算方法的比较","authors":"R. A. Mangkuto, M. Koerniawan","doi":"10.1080/15502724.2021.1957688","DOIUrl":null,"url":null,"abstract":"ABSTRACT The concept of illumination vector quantities at a given point in three-dimensional space has been proposed since long time ago, but it is mostly described for scenes with point light sources. In real scenes with area light sources, numerical approximations are required to estimate the illumination vector quantities, which can be done by discretising the area into an array of point sources. Two different approaches are proposed in this study; Approach 1 is applicable in the design phase, where the positions of the source and receiver point are exactly known. Approach 2 is applicable during field measurement, based on the obtained cubic illuminances. This study aims to determine the required number of point source elements in the computation and to investigate the difference between both calculation approaches. The proposed concept is demonstrated using a scenario with horizontal, square source and a scenario with vertical, rectangular source, with various luminous intensity distribution patterns, by observing various illumination vector quantities. Grid sensitivity analyses suggest that the largest grid size satisfying the five-to-one approximation rule shall yield quantities that converge within no more than 5% to the final value. For a given size of area source, at a given distance, the differences of illumination vector quantities obtained from both calculation approaches are expected to be approximately the same, regardless the luminous intensity distribution. The estimation of cylindrical illuminance is generally more accurate than that of scalar illuminance.","PeriodicalId":49911,"journal":{"name":"Leukos","volume":"48 1","pages":"475 - 492"},"PeriodicalIF":2.6000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Illumination Vector Quantities Due to Area Light Sources: Comparison of Two Calculation Approaches\",\"authors\":\"R. A. Mangkuto, M. Koerniawan\",\"doi\":\"10.1080/15502724.2021.1957688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The concept of illumination vector quantities at a given point in three-dimensional space has been proposed since long time ago, but it is mostly described for scenes with point light sources. In real scenes with area light sources, numerical approximations are required to estimate the illumination vector quantities, which can be done by discretising the area into an array of point sources. Two different approaches are proposed in this study; Approach 1 is applicable in the design phase, where the positions of the source and receiver point are exactly known. Approach 2 is applicable during field measurement, based on the obtained cubic illuminances. This study aims to determine the required number of point source elements in the computation and to investigate the difference between both calculation approaches. The proposed concept is demonstrated using a scenario with horizontal, square source and a scenario with vertical, rectangular source, with various luminous intensity distribution patterns, by observing various illumination vector quantities. Grid sensitivity analyses suggest that the largest grid size satisfying the five-to-one approximation rule shall yield quantities that converge within no more than 5% to the final value. For a given size of area source, at a given distance, the differences of illumination vector quantities obtained from both calculation approaches are expected to be approximately the same, regardless the luminous intensity distribution. The estimation of cylindrical illuminance is generally more accurate than that of scalar illuminance.\",\"PeriodicalId\":49911,\"journal\":{\"name\":\"Leukos\",\"volume\":\"48 1\",\"pages\":\"475 - 492\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukos\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15502724.2021.1957688\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukos","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15502724.2021.1957688","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
On Illumination Vector Quantities Due to Area Light Sources: Comparison of Two Calculation Approaches
ABSTRACT The concept of illumination vector quantities at a given point in three-dimensional space has been proposed since long time ago, but it is mostly described for scenes with point light sources. In real scenes with area light sources, numerical approximations are required to estimate the illumination vector quantities, which can be done by discretising the area into an array of point sources. Two different approaches are proposed in this study; Approach 1 is applicable in the design phase, where the positions of the source and receiver point are exactly known. Approach 2 is applicable during field measurement, based on the obtained cubic illuminances. This study aims to determine the required number of point source elements in the computation and to investigate the difference between both calculation approaches. The proposed concept is demonstrated using a scenario with horizontal, square source and a scenario with vertical, rectangular source, with various luminous intensity distribution patterns, by observing various illumination vector quantities. Grid sensitivity analyses suggest that the largest grid size satisfying the five-to-one approximation rule shall yield quantities that converge within no more than 5% to the final value. For a given size of area source, at a given distance, the differences of illumination vector quantities obtained from both calculation approaches are expected to be approximately the same, regardless the luminous intensity distribution. The estimation of cylindrical illuminance is generally more accurate than that of scalar illuminance.
期刊介绍:
The Illuminating Engineering Society of North America and our publisher Taylor & Francis make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, The Illuminating Engineering Society of North America and our publisher Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by The Illuminating Engineering Society of North America and our publisher Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. The Illuminating Engineering Society of North America and our publisher Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to, or arising out of the use of the Content. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions .