{"title":"基于情感状态的人群异常检测","authors":"Glorija Baliniskite, E. Lavendelis, Mara Pudane","doi":"10.2478/acss-2019-0017","DOIUrl":null,"url":null,"abstract":"Abstract To distinguish individuals with dangerous abnormal behaviours from the crowd, human characteristics (e.g., speed and direction of motion, interaction with other people), crowd characteristics (such as flow and density), space available to individuals, etc. must be considered. The paper proposes an approach that considers individual and crowd metrics to determine anomaly. An individual’s abnormal behaviour alone cannot indicate behaviour, which can be threatening toward other individuals, as this behaviour can also be triggered by positive emotions or events. To avoid individuals whose abnormal behaviour is potentially unrelated to aggression and is not environmentally dangerous, it is suggested to use emotional state of individuals. The aim of the proposed approach is to automate video surveillance systems by enabling them to automatically detect potentially dangerous situations.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"83 1","pages":"134 - 140"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Affective State Based Anomaly Detection in Crowd\",\"authors\":\"Glorija Baliniskite, E. Lavendelis, Mara Pudane\",\"doi\":\"10.2478/acss-2019-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To distinguish individuals with dangerous abnormal behaviours from the crowd, human characteristics (e.g., speed and direction of motion, interaction with other people), crowd characteristics (such as flow and density), space available to individuals, etc. must be considered. The paper proposes an approach that considers individual and crowd metrics to determine anomaly. An individual’s abnormal behaviour alone cannot indicate behaviour, which can be threatening toward other individuals, as this behaviour can also be triggered by positive emotions or events. To avoid individuals whose abnormal behaviour is potentially unrelated to aggression and is not environmentally dangerous, it is suggested to use emotional state of individuals. The aim of the proposed approach is to automate video surveillance systems by enabling them to automatically detect potentially dangerous situations.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"83 1\",\"pages\":\"134 - 140\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2019-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2019-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Abstract To distinguish individuals with dangerous abnormal behaviours from the crowd, human characteristics (e.g., speed and direction of motion, interaction with other people), crowd characteristics (such as flow and density), space available to individuals, etc. must be considered. The paper proposes an approach that considers individual and crowd metrics to determine anomaly. An individual’s abnormal behaviour alone cannot indicate behaviour, which can be threatening toward other individuals, as this behaviour can also be triggered by positive emotions or events. To avoid individuals whose abnormal behaviour is potentially unrelated to aggression and is not environmentally dangerous, it is suggested to use emotional state of individuals. The aim of the proposed approach is to automate video surveillance systems by enabling them to automatically detect potentially dangerous situations.