Ittai Abraham, D. Malkhi, Kartik Nayak, Ling Ren, Maofan Yin
{"title":"Sync HotStuff:简单实用的同步状态机复制","authors":"Ittai Abraham, D. Malkhi, Kartik Nayak, Ling Ren, Maofan Yin","doi":"10.1109/SP40000.2020.00044","DOIUrl":null,"url":null,"abstract":"Synchronous solutions for Byzantine Fault Tolerance (BFT) can tolerate up to minority faults. In this work, we present Sync HotStuff, a surprisingly simple and intuitive synchronous BFT solution that achieves consensus with a latency of 2Δ in the steady state (where Δ is a synchronous message delay upper bound). In addition, Sync HotStuff ensures safety in a weaker synchronous model in which the synchrony assumption does not have to hold for all replicas all the time. Moreover, Sync HotStuff has optimistic responsiveness, i.e., it advances at network speed when less than one-quarter of the replicas are not responding. Borrowing from practical partially synchronous BFT solutions, Sync HotStuff has a two-phase leader-based structure, and has been fully prototyped under the standard synchrony assumption. When tolerating a single fault, Sync HotStuff achieves a throughput of over 280 Kops/sec under typical network performance, which is comparable to the best known partially synchronous solution.","PeriodicalId":6849,"journal":{"name":"2020 IEEE Symposium on Security and Privacy (SP)","volume":"20 1","pages":"106-118"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"131","resultStr":"{\"title\":\"Sync HotStuff: Simple and Practical Synchronous State Machine Replication\",\"authors\":\"Ittai Abraham, D. Malkhi, Kartik Nayak, Ling Ren, Maofan Yin\",\"doi\":\"10.1109/SP40000.2020.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronous solutions for Byzantine Fault Tolerance (BFT) can tolerate up to minority faults. In this work, we present Sync HotStuff, a surprisingly simple and intuitive synchronous BFT solution that achieves consensus with a latency of 2Δ in the steady state (where Δ is a synchronous message delay upper bound). In addition, Sync HotStuff ensures safety in a weaker synchronous model in which the synchrony assumption does not have to hold for all replicas all the time. Moreover, Sync HotStuff has optimistic responsiveness, i.e., it advances at network speed when less than one-quarter of the replicas are not responding. Borrowing from practical partially synchronous BFT solutions, Sync HotStuff has a two-phase leader-based structure, and has been fully prototyped under the standard synchrony assumption. When tolerating a single fault, Sync HotStuff achieves a throughput of over 280 Kops/sec under typical network performance, which is comparable to the best known partially synchronous solution.\",\"PeriodicalId\":6849,\"journal\":{\"name\":\"2020 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"20 1\",\"pages\":\"106-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"131\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP40000.2020.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40000.2020.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sync HotStuff: Simple and Practical Synchronous State Machine Replication
Synchronous solutions for Byzantine Fault Tolerance (BFT) can tolerate up to minority faults. In this work, we present Sync HotStuff, a surprisingly simple and intuitive synchronous BFT solution that achieves consensus with a latency of 2Δ in the steady state (where Δ is a synchronous message delay upper bound). In addition, Sync HotStuff ensures safety in a weaker synchronous model in which the synchrony assumption does not have to hold for all replicas all the time. Moreover, Sync HotStuff has optimistic responsiveness, i.e., it advances at network speed when less than one-quarter of the replicas are not responding. Borrowing from practical partially synchronous BFT solutions, Sync HotStuff has a two-phase leader-based structure, and has been fully prototyped under the standard synchrony assumption. When tolerating a single fault, Sync HotStuff achieves a throughput of over 280 Kops/sec under typical network performance, which is comparable to the best known partially synchronous solution.