基于FPGA的卫星遥控接收模块降低精度冗余

Q4 Engineering 工程设计学报 Pub Date : 2013-09-24 DOI:10.1155/2013/453872
S. Sadruddin, A. Aziz
{"title":"基于FPGA的卫星遥控接收模块降低精度冗余","authors":"S. Sadruddin, A. Aziz","doi":"10.1155/2013/453872","DOIUrl":null,"url":null,"abstract":"A novel and highly efficient design of a software defined radiation tolerant baseband module for a LEO satellite telecommand receiver using FPGA is presented. FPGAs in space are subject to single event upsets (SEUs) due to high radiation environment. Traditionally, triple modular redundancy (TMR) is used for mitigating Single Event Upsets (SEUs). The drawback of using TMR is that it consumes a lot of hardware resources and requires more power. Reduced precision redundancy (RPR) can be a viable alternative of TMR in digital systems for arithmetic operations. This paper uses the combination of RPR and TMR for mitigating SEUs. The designed module consumes less resources on FPGA and has bit error rate (BER) identical to theoretical results, apart from degradation due to implementation losses. An improved Costas loop and timing recovery algorithm are implemented for achieving carrier recovery and bit synchronization. The hybrid approach mitigates SEUs while consuming 26% less resources than a customary TMR protected receiver.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"5 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reduced Precision Redundancy for Satellite Telecommand Receiver Module on FPGA\",\"authors\":\"S. Sadruddin, A. Aziz\",\"doi\":\"10.1155/2013/453872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel and highly efficient design of a software defined radiation tolerant baseband module for a LEO satellite telecommand receiver using FPGA is presented. FPGAs in space are subject to single event upsets (SEUs) due to high radiation environment. Traditionally, triple modular redundancy (TMR) is used for mitigating Single Event Upsets (SEUs). The drawback of using TMR is that it consumes a lot of hardware resources and requires more power. Reduced precision redundancy (RPR) can be a viable alternative of TMR in digital systems for arithmetic operations. This paper uses the combination of RPR and TMR for mitigating SEUs. The designed module consumes less resources on FPGA and has bit error rate (BER) identical to theoretical results, apart from degradation due to implementation losses. An improved Costas loop and timing recovery algorithm are implemented for achieving carrier recovery and bit synchronization. The hybrid approach mitigates SEUs while consuming 26% less resources than a customary TMR protected receiver.\",\"PeriodicalId\":31263,\"journal\":{\"name\":\"工程设计学报\",\"volume\":\"5 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"工程设计学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/453872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2013/453872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于FPGA的低轨道卫星通信接收机软件定义容辐射基带模块的高效设计方法。由于空间高辐射环境,fpga容易受到单事件干扰(SEUs)。传统上,三重模块冗余(TMR)用于减轻单事件干扰(seu)。使用TMR的缺点是它消耗大量硬件资源,并且需要更多的功率。在数字系统中,降低精度冗余(RPR)是一种可行的TMR替代方案。本文采用RPR和TMR相结合的方法来缓解seu。设计的模块在FPGA上消耗较少的资源,并且除了由于实现损耗而导致的性能下降外,误码率(BER)与理论结果相同。为了实现载波恢复和位同步,实现了改进的Costas环和定时恢复算法。混合方法减少了seu,同时比传统的TMR保护接收器消耗的资源少26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced Precision Redundancy for Satellite Telecommand Receiver Module on FPGA
A novel and highly efficient design of a software defined radiation tolerant baseband module for a LEO satellite telecommand receiver using FPGA is presented. FPGAs in space are subject to single event upsets (SEUs) due to high radiation environment. Traditionally, triple modular redundancy (TMR) is used for mitigating Single Event Upsets (SEUs). The drawback of using TMR is that it consumes a lot of hardware resources and requires more power. Reduced precision redundancy (RPR) can be a viable alternative of TMR in digital systems for arithmetic operations. This paper uses the combination of RPR and TMR for mitigating SEUs. The designed module consumes less resources on FPGA and has bit error rate (BER) identical to theoretical results, apart from degradation due to implementation losses. An improved Costas loop and timing recovery algorithm are implemented for achieving carrier recovery and bit synchronization. The hybrid approach mitigates SEUs while consuming 26% less resources than a customary TMR protected receiver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
工程设计学报
工程设计学报 Engineering-Engineering (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
2447
审稿时长
14 weeks
期刊介绍: Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.
期刊最新文献
Innovative design of box elevator epidemic prevention function integrating AD and TRIZ Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer Application progress of artificial intelligence in military confrontation Cloud storage data integrity audit based on an index–stub table Clinical named entity recognition from Chinese electronic medical records using a double-layer annotation model combining a domain dictionary with CRF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1