基于非局部分数Timoshenko梁模型研究粘弹性基础上粘弹性流体输送碳纳米管的振动

M. F. Oskouie, Reza Ansari, H. Rouhi
{"title":"基于非局部分数Timoshenko梁模型研究粘弹性基础上粘弹性流体输送碳纳米管的振动","authors":"M. F. Oskouie, Reza Ansari, H. Rouhi","doi":"10.1177/2397791420931701","DOIUrl":null,"url":null,"abstract":"On the basis of fractional viscoelasticity, the size-dependent free-vibration response of viscoelastic carbon nanotubes conveying fluid and resting on viscoelastic foundation is studied in this article. To this end, a nonlocal Timoshenko beam model is developed in the context of fractional calculus. Hamilton’s principle is applied in order to obtain the fractional governing equations including nanoscale effects. The Kelvin–Voigt viscoelastic model is also used for the constitutive equations. The free-vibration problem is solved using two methods. In the first method, which is limited to the simply supported boundary conditions, the Galerkin technique is employed for discretizing the spatial variables and reducing the governing equations to a set of ordinary differential equations on the time domain. Then, the Duffing-type time-dependent equations including fractional derivatives are solved via fractional integrator transfer functions. In the second method, which can be utilized for carbon nanotubes with different types of boundary conditions, the generalized differential quadrature technique is used for discretizing the governing equations on spatial grids, whereas the finite difference technique is used on the time domain. In the results, the influences of nonlocality, geometrical parameters, fractional derivative orders, viscoelastic foundation, and fluid flow velocity on the time responses of carbon nanotubes are analyzed.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"1 1","pages":"30 - 40"},"PeriodicalIF":4.2000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigating vibrations of viscoelastic fluid-conveying carbon nanotubes resting on viscoelastic foundation using a nonlocal fractional Timoshenko beam model\",\"authors\":\"M. F. Oskouie, Reza Ansari, H. Rouhi\",\"doi\":\"10.1177/2397791420931701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the basis of fractional viscoelasticity, the size-dependent free-vibration response of viscoelastic carbon nanotubes conveying fluid and resting on viscoelastic foundation is studied in this article. To this end, a nonlocal Timoshenko beam model is developed in the context of fractional calculus. Hamilton’s principle is applied in order to obtain the fractional governing equations including nanoscale effects. The Kelvin–Voigt viscoelastic model is also used for the constitutive equations. The free-vibration problem is solved using two methods. In the first method, which is limited to the simply supported boundary conditions, the Galerkin technique is employed for discretizing the spatial variables and reducing the governing equations to a set of ordinary differential equations on the time domain. Then, the Duffing-type time-dependent equations including fractional derivatives are solved via fractional integrator transfer functions. In the second method, which can be utilized for carbon nanotubes with different types of boundary conditions, the generalized differential quadrature technique is used for discretizing the governing equations on spatial grids, whereas the finite difference technique is used on the time domain. In the results, the influences of nonlocality, geometrical parameters, fractional derivative orders, viscoelastic foundation, and fluid flow velocity on the time responses of carbon nanotubes are analyzed.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":\"1 1\",\"pages\":\"30 - 40\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2020-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2397791420931701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791420931701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

本文在分数粘弹性理论的基础上,研究了粘弹性碳纳米管在粘弹性基础上输送流体时随尺寸变化的自由振动响应。为此,在分数阶微积分的背景下,建立了一个非局部Timoshenko梁模型。为了得到包含纳米级效应的分数阶控制方程,应用了汉密尔顿原理。本构方程也采用了Kelvin-Voigt粘弹性模型。自由振动问题用两种方法求解。第一种方法是在简支边界条件下,利用伽辽金技术对空间变量进行离散,将控制方程在时域上化为一组常微分方程。然后,利用分数阶积分传递函数求解含分数阶导数的duffing型时变方程。第二种方法适用于具有不同边界条件的碳纳米管,在空间网格上使用广义微分正交技术对控制方程进行离散,而在时间域上使用有限差分技术。结果分析了非定域、几何参数、分数阶导数阶数、粘弹性基础和流体流速对碳纳米管时间响应的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating vibrations of viscoelastic fluid-conveying carbon nanotubes resting on viscoelastic foundation using a nonlocal fractional Timoshenko beam model
On the basis of fractional viscoelasticity, the size-dependent free-vibration response of viscoelastic carbon nanotubes conveying fluid and resting on viscoelastic foundation is studied in this article. To this end, a nonlocal Timoshenko beam model is developed in the context of fractional calculus. Hamilton’s principle is applied in order to obtain the fractional governing equations including nanoscale effects. The Kelvin–Voigt viscoelastic model is also used for the constitutive equations. The free-vibration problem is solved using two methods. In the first method, which is limited to the simply supported boundary conditions, the Galerkin technique is employed for discretizing the spatial variables and reducing the governing equations to a set of ordinary differential equations on the time domain. Then, the Duffing-type time-dependent equations including fractional derivatives are solved via fractional integrator transfer functions. In the second method, which can be utilized for carbon nanotubes with different types of boundary conditions, the generalized differential quadrature technique is used for discretizing the governing equations on spatial grids, whereas the finite difference technique is used on the time domain. In the results, the influences of nonlocality, geometrical parameters, fractional derivative orders, viscoelastic foundation, and fluid flow velocity on the time responses of carbon nanotubes are analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
期刊最新文献
Performance of carbon nanotubes (CNTs) on the development of radiating hybrid nanofluid flow through an stretching cylinder Optimizing compressive mechanical properties and water absorption of polycaprolactone/nano-hydroxyapatite composite scaffolds by 3D printing based on fused deposition modeling Effectiveness of silver-magnesium oxide-water hybrid nanofluid in Couette channel Optimization and fuzzy model for evaluation of mechanical and tribological properties of Al-CNT-Si3N4 based nano and hybrid composites Adsorption investigation of a composite of metal-organic framework and polyethylene oxide hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1