B. Bursten, M. Chisholm, M. Drummond, J. Gallucci, Carl B. Hollandsworth
{"title":"环己四烯二钨烷氧化物:W2(μ-η5,η5-COT)(OR)4,其中R = CH2tBu, iPr,和tBu","authors":"B. Bursten, M. Chisholm, M. Drummond, J. Gallucci, Carl B. Hollandsworth","doi":"10.1039/B205130N","DOIUrl":null,"url":null,"abstract":"Four equivalents of neopentanol, isopropanol, or t-butanol react with the cyclooctatetraene-bridged dimethylamide, W2(μ-η5,η5-COT)(NMe2)4, to give the corresponding tetraalkoxides, W2(μ-η5,η5-COT)(OR)4, in greater than 70% yields. The alkoxide W2(COT)(OCH2tBu)4 can be made alternatively by reacting W2(COT)(OtBu)4 with 4 equivalents of neopentanol. X-ray diffraction data for the t-butoxide compound indicate a μ-η5,η5-COT ligand spans a W–W bond of distance 2.3887(1) \nA. The t-butoxide is very similar in most structural parameters to the known W2(COT)(NMe2)4 precursor as well as the bis-allyl compound W2(allyl)2(NMe2)4. The COT ring is fluxional about the metal–metal fragment, undergoing rapid 1,2-shifts on the NMR timescale as determined by 1H EXSY NMR. The purple alkoxides exhibit maximum absorptions around 580 nm (e \n∼ 1700 M−1 cm−1) in the visible region of the electronic absorption spectrum. This transition agrees well with DFT calculations on the model compound W2(μ-η5,η5-COT)(OH)4 that reveal the calculated HOMO–LUMO gap to be a 1.94 eV transition involving principally the metal d orbitals. The calculations also reveal the structure with an antifacial (η5,η5)-COT to be 13.7 kcal mol−1 more stable than the corresponding synfacial (η4,η4)-COT structure. In related studies, COT did not form adducts with W2(OCH2tBu)6(py)2, W2(OtBu)6, or W2(OCH2tBu)8 even upon heating to 80 °C for several hours.","PeriodicalId":17317,"journal":{"name":"Journal of The Chemical Society-dalton Transactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cyclooctatetraene ditungsten alkoxides: W2(μ-η5,η5-COT)(OR)4, where R = CH2tBu, iPr, and tBu\",\"authors\":\"B. Bursten, M. Chisholm, M. Drummond, J. Gallucci, Carl B. Hollandsworth\",\"doi\":\"10.1039/B205130N\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Four equivalents of neopentanol, isopropanol, or t-butanol react with the cyclooctatetraene-bridged dimethylamide, W2(μ-η5,η5-COT)(NMe2)4, to give the corresponding tetraalkoxides, W2(μ-η5,η5-COT)(OR)4, in greater than 70% yields. The alkoxide W2(COT)(OCH2tBu)4 can be made alternatively by reacting W2(COT)(OtBu)4 with 4 equivalents of neopentanol. X-ray diffraction data for the t-butoxide compound indicate a μ-η5,η5-COT ligand spans a W–W bond of distance 2.3887(1) \\nA. The t-butoxide is very similar in most structural parameters to the known W2(COT)(NMe2)4 precursor as well as the bis-allyl compound W2(allyl)2(NMe2)4. The COT ring is fluxional about the metal–metal fragment, undergoing rapid 1,2-shifts on the NMR timescale as determined by 1H EXSY NMR. The purple alkoxides exhibit maximum absorptions around 580 nm (e \\n∼ 1700 M−1 cm−1) in the visible region of the electronic absorption spectrum. This transition agrees well with DFT calculations on the model compound W2(μ-η5,η5-COT)(OH)4 that reveal the calculated HOMO–LUMO gap to be a 1.94 eV transition involving principally the metal d orbitals. The calculations also reveal the structure with an antifacial (η5,η5)-COT to be 13.7 kcal mol−1 more stable than the corresponding synfacial (η4,η4)-COT structure. In related studies, COT did not form adducts with W2(OCH2tBu)6(py)2, W2(OtBu)6, or W2(OCH2tBu)8 even upon heating to 80 °C for several hours.\",\"PeriodicalId\":17317,\"journal\":{\"name\":\"Journal of The Chemical Society-dalton Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chemical Society-dalton Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/B205130N\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chemical Society-dalton Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/B205130N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cyclooctatetraene ditungsten alkoxides: W2(μ-η5,η5-COT)(OR)4, where R = CH2tBu, iPr, and tBu
Four equivalents of neopentanol, isopropanol, or t-butanol react with the cyclooctatetraene-bridged dimethylamide, W2(μ-η5,η5-COT)(NMe2)4, to give the corresponding tetraalkoxides, W2(μ-η5,η5-COT)(OR)4, in greater than 70% yields. The alkoxide W2(COT)(OCH2tBu)4 can be made alternatively by reacting W2(COT)(OtBu)4 with 4 equivalents of neopentanol. X-ray diffraction data for the t-butoxide compound indicate a μ-η5,η5-COT ligand spans a W–W bond of distance 2.3887(1)
A. The t-butoxide is very similar in most structural parameters to the known W2(COT)(NMe2)4 precursor as well as the bis-allyl compound W2(allyl)2(NMe2)4. The COT ring is fluxional about the metal–metal fragment, undergoing rapid 1,2-shifts on the NMR timescale as determined by 1H EXSY NMR. The purple alkoxides exhibit maximum absorptions around 580 nm (e
∼ 1700 M−1 cm−1) in the visible region of the electronic absorption spectrum. This transition agrees well with DFT calculations on the model compound W2(μ-η5,η5-COT)(OH)4 that reveal the calculated HOMO–LUMO gap to be a 1.94 eV transition involving principally the metal d orbitals. The calculations also reveal the structure with an antifacial (η5,η5)-COT to be 13.7 kcal mol−1 more stable than the corresponding synfacial (η4,η4)-COT structure. In related studies, COT did not form adducts with W2(OCH2tBu)6(py)2, W2(OtBu)6, or W2(OCH2tBu)8 even upon heating to 80 °C for several hours.