窄带高斯随机过程尖峰平均数目问题的精确解析解

Ivan D. Lobanov, Alexander V. Denisov
{"title":"窄带高斯随机过程尖峰平均数目问题的精确解析解","authors":"Ivan D. Lobanov,&nbsp;Alexander V. Denisov","doi":"10.1016/j.spjpm.2016.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, the problem of the number of spikes (level crossings) of the stationary narrowband Gaussian process has been considered. The process was specified by an exponentially-cosine autocorrelation function. The problem had been solved earlier by Rice in terms of the joint probabilities’ density of the process and its derivative with respect to time, but in our article we obtained the solution using the functional of probabilities’ density (the functional was obtained by Amiantov), as well as an expansion of the canonical stochastic process. In this article, the optimal canonical expansion of a narrowband stochastic process based on the work of Filimonov and Denisov was also considered to solve the problem. The application of all these resources allowed obtaining an exact analytical solution of the problem on spikes of stationary narrowband Gaussian process. The obtained formulae could be used to solve, for example, some problems about the residual resource of some radiotechnical products, about the breaking sea waves and others.</p></div>","PeriodicalId":41808,"journal":{"name":"St Petersburg Polytechnic University Journal-Physics and Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.spjpm.2016.05.007","citationCount":"0","resultStr":"{\"title\":\"The exact analytical solution of the problem on the average number of spikes of the narrowband Gaussian stochastic process\",\"authors\":\"Ivan D. Lobanov,&nbsp;Alexander V. Denisov\",\"doi\":\"10.1016/j.spjpm.2016.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, the problem of the number of spikes (level crossings) of the stationary narrowband Gaussian process has been considered. The process was specified by an exponentially-cosine autocorrelation function. The problem had been solved earlier by Rice in terms of the joint probabilities’ density of the process and its derivative with respect to time, but in our article we obtained the solution using the functional of probabilities’ density (the functional was obtained by Amiantov), as well as an expansion of the canonical stochastic process. In this article, the optimal canonical expansion of a narrowband stochastic process based on the work of Filimonov and Denisov was also considered to solve the problem. The application of all these resources allowed obtaining an exact analytical solution of the problem on spikes of stationary narrowband Gaussian process. The obtained formulae could be used to solve, for example, some problems about the residual resource of some radiotechnical products, about the breaking sea waves and others.</p></div>\",\"PeriodicalId\":41808,\"journal\":{\"name\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.spjpm.2016.05.007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405722316300780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Polytechnic University Journal-Physics and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405722316300780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了平稳窄带高斯过程的尖峰(平交点)数目问题。该过程由指数余弦自相关函数指定。这个问题早前由Rice通过过程的联合概率密度及其对时间的导数来解决,但在我们的文章中,我们使用概率密度的泛函(该泛函是由Amiantov获得的)以及典型随机过程的展开来获得解决方案。本文还考虑了基于Filimonov和Denisov工作的窄带随机过程的最优正则展开来解决该问题。所有这些资源的应用使平稳窄带高斯过程尖峰问题的精确解析解得以实现。所得公式可用于解决某些无线电产品的剩余资源、海浪破碎等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The exact analytical solution of the problem on the average number of spikes of the narrowband Gaussian stochastic process

In this article, the problem of the number of spikes (level crossings) of the stationary narrowband Gaussian process has been considered. The process was specified by an exponentially-cosine autocorrelation function. The problem had been solved earlier by Rice in terms of the joint probabilities’ density of the process and its derivative with respect to time, but in our article we obtained the solution using the functional of probabilities’ density (the functional was obtained by Amiantov), as well as an expansion of the canonical stochastic process. In this article, the optimal canonical expansion of a narrowband stochastic process based on the work of Filimonov and Denisov was also considered to solve the problem. The application of all these resources allowed obtaining an exact analytical solution of the problem on spikes of stationary narrowband Gaussian process. The obtained formulae could be used to solve, for example, some problems about the residual resource of some radiotechnical products, about the breaking sea waves and others.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
0
期刊最新文献
A comparison of potential functions for molecular dynamic simulation of methane sorption in the silicalite CONTRIBUTION OF INTERNAL IONIZATION PROCESSES IN SEMICONDUCTORS TO RADIATIVE LOSSES OF RELATIVISTIC ELECTRONS A study of thermal regime in the high-power LED arrays Greenish blue luminescence in NaCd(1−x) SO4F: XEu2+ halosulphate phosphor for solid state lightening devices N = 28 isotones: Shape coexistence towards proton-deficient side
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1