UHPLC-ESI-Q-ToF法测定红葡萄酒原花青素的序列

Adelaine Delcambre, Yann André, C. Saucier
{"title":"UHPLC-ESI-Q-ToF法测定红葡萄酒原花青素的序列","authors":"Adelaine Delcambre, Yann André, C. Saucier","doi":"10.17145/JAB.15.009","DOIUrl":null,"url":null,"abstract":"Phenolic compounds are considered as secondary metabolites and are widespread in the plant kingdom [1, 2]. These compounds are present in vegetables [3], fruits [4], tea [5] and red wine [6-8]. They are known for their oxidative defense [9], their ability to reduce certain cancers [10, 11], their preventive activity against infectious [12] and degenerative diseases [13,14]. Among these phenolic compounds, the proanthocyanidins (PAs) or flavan-3-ols represent a significant family and they play an important role during wine making [15] and red wine tasting [16]. Four monomeric units [17, 18] are present in the grape and red wine: (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC) and (-)-epicatechin-3-O-gallate (ECG) (Figure 1). These monomers give rise to the formation of oligomers and polymers via an interflavan bond between C4 of the top unit and C6 or C8 [4, 19] of the lower unit and sometimes an additional ether bond between C2 of the top unit and C5 or C7 of the lower unit [20, 21]. (-)-epicatechin (EC), (+)-catechin (C) and (-)-epicatechin-3-O-gallate (ECG) are mainly located in grape seeds, whereas the monomeric unit (-)-epigallocatechin (EGC) is only present in grape skins [22, 23]. These compounds present in red wine are involved in the astringency phenomenon [16, 17], the bitterness, the body [24], the wine aging [25] and the organoleptic properties [26]. These proanthocyanidins have been studied by analytical method such as high-performance liquid chromatography (HPLC) [27], mass spectrometry coupled with UHPLC system [28], and nuclear magnetic resonance (NMR) [29]. In the current study, we first describe the theoretical possibilities to form oligomers with A and B-type interflavan bond. In a second part, we describe specific fragmentation pathways allowing the sequencing of proanthocyanidins in red wine using a UHPLC-ESI-Q-ToF. JOURNAL OF APPLIED BIOANALYSIS, Apr. 2015, p. 46-54. http://dx.doi.org/10.17145/jab.15.009 (ISSN 2405-710X) Vol. 1, No. 2","PeriodicalId":15014,"journal":{"name":"Journal of Applied Bioanalysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sequencing of red wine proanthocyanidins by UHPLC-ESI-Q-ToF\",\"authors\":\"Adelaine Delcambre, Yann André, C. Saucier\",\"doi\":\"10.17145/JAB.15.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phenolic compounds are considered as secondary metabolites and are widespread in the plant kingdom [1, 2]. These compounds are present in vegetables [3], fruits [4], tea [5] and red wine [6-8]. They are known for their oxidative defense [9], their ability to reduce certain cancers [10, 11], their preventive activity against infectious [12] and degenerative diseases [13,14]. Among these phenolic compounds, the proanthocyanidins (PAs) or flavan-3-ols represent a significant family and they play an important role during wine making [15] and red wine tasting [16]. Four monomeric units [17, 18] are present in the grape and red wine: (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC) and (-)-epicatechin-3-O-gallate (ECG) (Figure 1). These monomers give rise to the formation of oligomers and polymers via an interflavan bond between C4 of the top unit and C6 or C8 [4, 19] of the lower unit and sometimes an additional ether bond between C2 of the top unit and C5 or C7 of the lower unit [20, 21]. (-)-epicatechin (EC), (+)-catechin (C) and (-)-epicatechin-3-O-gallate (ECG) are mainly located in grape seeds, whereas the monomeric unit (-)-epigallocatechin (EGC) is only present in grape skins [22, 23]. These compounds present in red wine are involved in the astringency phenomenon [16, 17], the bitterness, the body [24], the wine aging [25] and the organoleptic properties [26]. These proanthocyanidins have been studied by analytical method such as high-performance liquid chromatography (HPLC) [27], mass spectrometry coupled with UHPLC system [28], and nuclear magnetic resonance (NMR) [29]. In the current study, we first describe the theoretical possibilities to form oligomers with A and B-type interflavan bond. In a second part, we describe specific fragmentation pathways allowing the sequencing of proanthocyanidins in red wine using a UHPLC-ESI-Q-ToF. JOURNAL OF APPLIED BIOANALYSIS, Apr. 2015, p. 46-54. http://dx.doi.org/10.17145/jab.15.009 (ISSN 2405-710X) Vol. 1, No. 2\",\"PeriodicalId\":15014,\"journal\":{\"name\":\"Journal of Applied Bioanalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Bioanalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17145/JAB.15.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Bioanalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17145/JAB.15.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

酚类化合物被认为是次生代谢物,在植物界广泛存在[1,2]。这些化合物存在于蔬菜[3]、水果[4]、茶[5]和红酒[6-8]中。众所周知,它们具有氧化防御[9]、减少某些癌症的能力[10,11]、对感染性疾病[12]和退行性疾病的预防作用[13,14]。在这些酚类化合物中,原花青素(PAs)或黄烷-3-醇是一个重要的家族,它们在酿酒[15]和红葡萄酒品鉴[16]中发挥着重要作用。四个单体的单位(17、18)存在于葡萄和红酒:(+)儿茶素(C),(-)表儿茶素(EC),(-)儿茶素(EGC)和(-)-epicatechin-3-O-gallate (ECG)(图1)。这些单体产生的形成低聚物和聚合物通过interflavan债券之间的C4的单位和C6、C8(4、19)的单位,有时一个额外的醚键之间C2的单位和C5或C7的单位(20、21)。(-)-表儿茶素(EC)、(+)-儿茶素(C)和(-)-表儿茶素-3- o -没食子酸酯(ECG)主要存在于葡萄籽中,而单体单位(-)-表没食子儿茶素(EGC)仅存在于葡萄皮中[22,23]。这些存在于红葡萄酒中的化合物与涩味现象[16,17]、苦味、酒体[24]、葡萄酒陈酿[25]和感官特性[26]有关。这些原花青素已通过高效液相色谱(HPLC)[27]、质谱联用UHPLC系统[28]、核磁共振(NMR)[29]等分析方法进行了研究。在目前的研究中,我们首先描述了形成具有A型和b型间键的低聚物的理论可能性。在第二部分中,我们描述了使用UHPLC-ESI-Q-ToF对红葡萄酒中原花青素进行测序的特定裂解途径。应用生物分析学报,2015,p. 46-54。http://dx.doi.org/10.17145/jab.15.009 (ISSN 2405-710X)第一卷,第2期
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequencing of red wine proanthocyanidins by UHPLC-ESI-Q-ToF
Phenolic compounds are considered as secondary metabolites and are widespread in the plant kingdom [1, 2]. These compounds are present in vegetables [3], fruits [4], tea [5] and red wine [6-8]. They are known for their oxidative defense [9], their ability to reduce certain cancers [10, 11], their preventive activity against infectious [12] and degenerative diseases [13,14]. Among these phenolic compounds, the proanthocyanidins (PAs) or flavan-3-ols represent a significant family and they play an important role during wine making [15] and red wine tasting [16]. Four monomeric units [17, 18] are present in the grape and red wine: (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC) and (-)-epicatechin-3-O-gallate (ECG) (Figure 1). These monomers give rise to the formation of oligomers and polymers via an interflavan bond between C4 of the top unit and C6 or C8 [4, 19] of the lower unit and sometimes an additional ether bond between C2 of the top unit and C5 or C7 of the lower unit [20, 21]. (-)-epicatechin (EC), (+)-catechin (C) and (-)-epicatechin-3-O-gallate (ECG) are mainly located in grape seeds, whereas the monomeric unit (-)-epigallocatechin (EGC) is only present in grape skins [22, 23]. These compounds present in red wine are involved in the astringency phenomenon [16, 17], the bitterness, the body [24], the wine aging [25] and the organoleptic properties [26]. These proanthocyanidins have been studied by analytical method such as high-performance liquid chromatography (HPLC) [27], mass spectrometry coupled with UHPLC system [28], and nuclear magnetic resonance (NMR) [29]. In the current study, we first describe the theoretical possibilities to form oligomers with A and B-type interflavan bond. In a second part, we describe specific fragmentation pathways allowing the sequencing of proanthocyanidins in red wine using a UHPLC-ESI-Q-ToF. JOURNAL OF APPLIED BIOANALYSIS, Apr. 2015, p. 46-54. http://dx.doi.org/10.17145/jab.15.009 (ISSN 2405-710X) Vol. 1, No. 2
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Box-Behnken Design (BBD) Based Optimization of Mucoadhesive Tablet Loaded Nifedipine: In-vitro Release and Stability Studies Challenges in Development and Qualification of PCR/dPCR Assays for Gene Therapy Biodistribution and Viral Shedding Assessment Current Challenges and Opportunities in using the LAL Assay for Endotoxin Testing Pharmacokinetic Profile of Metformin and SGLT2 Inhibitors alone and in Combination: a Pharmacokinetic Study in Wistar Rats Survey on Microsampling in Bioanalysis: Opportunities and Challenges-Results and Conclusions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1