用于稀有CNVs检测的高效多样本aCGH分析

Maciej Sykulski, T. Gambin, M. Bartnik, K. Derwinska, B. Wiśniowiecka-Kowalnik, P. Stankiewicz, A. Gambin
{"title":"用于稀有CNVs检测的高效多样本aCGH分析","authors":"Maciej Sykulski, T. Gambin, M. Bartnik, K. Derwinska, B. Wiśniowiecka-Kowalnik, P. Stankiewicz, A. Gambin","doi":"10.1109/BIBM.2011.38","DOIUrl":null,"url":null,"abstract":"We propose a novel multiple sample aCGH analysis methodology aiming in rare Copy-Number Variations (CNVs) detection. Our method is tested on exon targeted aCGH array of 366 patients affected with developmental delay/intellectual disability, epilepsy, or autism. The proposed algorithms can be applied as a post -- processing filtering to any given segmentation method. Thanks to the additional information obtained from multiple samples, we could efficiently detect significant segments corresponding to rare CNVs responsible for pathogenic changes. More detailed description of the method is available in Supplementary Materials at: http://bioputer.mimuw.edu.pl/acgh.","PeriodicalId":73283,"journal":{"name":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","volume":"43 1","pages":"406-409"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Multiple Samples aCGH Analysis for Rare CNVs Detection\",\"authors\":\"Maciej Sykulski, T. Gambin, M. Bartnik, K. Derwinska, B. Wiśniowiecka-Kowalnik, P. Stankiewicz, A. Gambin\",\"doi\":\"10.1109/BIBM.2011.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel multiple sample aCGH analysis methodology aiming in rare Copy-Number Variations (CNVs) detection. Our method is tested on exon targeted aCGH array of 366 patients affected with developmental delay/intellectual disability, epilepsy, or autism. The proposed algorithms can be applied as a post -- processing filtering to any given segmentation method. Thanks to the additional information obtained from multiple samples, we could efficiently detect significant segments corresponding to rare CNVs responsible for pathogenic changes. More detailed description of the method is available in Supplementary Materials at: http://bioputer.mimuw.edu.pl/acgh.\",\"PeriodicalId\":73283,\"journal\":{\"name\":\"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine\",\"volume\":\"43 1\",\"pages\":\"406-409\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2011.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的多样本aCGH分析方法,旨在检测罕见的拷贝数变异(CNVs)。我们的方法在366例发育迟缓/智力残疾、癫痫或自闭症患者的外显子靶向aCGH阵列上进行了测试。所提出的算法可以作为任何给定分割方法的后处理滤波。由于从多个样本中获得的额外信息,我们可以有效地检测出导致致病性变化的罕见CNVs对应的重要片段。有关该方法的更详细描述,请参阅补充材料:http://bioputer.mimuw.edu.pl/acgh。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Multiple Samples aCGH Analysis for Rare CNVs Detection
We propose a novel multiple sample aCGH analysis methodology aiming in rare Copy-Number Variations (CNVs) detection. Our method is tested on exon targeted aCGH array of 366 patients affected with developmental delay/intellectual disability, epilepsy, or autism. The proposed algorithms can be applied as a post -- processing filtering to any given segmentation method. Thanks to the additional information obtained from multiple samples, we could efficiently detect significant segments corresponding to rare CNVs responsible for pathogenic changes. More detailed description of the method is available in Supplementary Materials at: http://bioputer.mimuw.edu.pl/acgh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diurnal Pain Classification in Critically Ill Patients using Machine Learning on Accelerometry and Analgesic Data. Transmission cluster characteristics of global, regional, and lineage-specific SARS-CoV-2 phylogenies. Document-level DDI relation extraction with document-entity embedding The Network Pharmacological Mechanism of Yizhiningshen Oral Liquid in the Treatment of Tic Disorders Study on the Medication Law of Traditional Chinese medicine treating Lumbago based on TCM electronic medical record
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1