普通小麦及其祖先种的基因比较分析

K. Tsunewaki, H. Kihara
{"title":"普通小麦及其祖先种的基因比较分析","authors":"K. Tsunewaki, H. Kihara","doi":"10.1266/JJG.37.474","DOIUrl":null,"url":null,"abstract":"1) It has been known that complementary necrosis in common wheat is mainly controlled by three genes, Ne1 located in chromosome 5B (V), Ne2 in 2A (XIII)and Ne3 in 3D (XVI). However, the B1 and F2 data from the cross T. macha subletshchumicum ×T. aestivum Chinese Spring indicated that a recessive gene in addition to the above-mentioned genes must be considered regarding the expression of necrosis.2) Relationships among various varieties of common wheat concerning necrosis are represented in the diagram of Fig. 2.3) Distribution of the three major genes in common wheat and its ancestors, Emmer wheat and Ae. squarrosa, was investigated using T. aestivum Prelude (Ne1ne2Ne3), T. aestivum Kharkov (ne1Ne2Ne3) and T. macha subletshchumicum (Ne1Ne2ne3) as test varieties.In Emmer wheat a majority of varieties were found to have the genotype Ne1ne2, while minor fractions were either ne1ne2 or Ne1Ne2.All strains of Ae. squarrosa so far tested had Ne3.In common wheat, most varieties were either ne1ne2Ne3 or ne1Ne2Ne3, while a small fraction were Ne1ne2Ne3. One variety only was found to be Ne1ne2ne3 and another only one to be Ne1Ne2ne3, both belonging to T. macha.4) From these results, the genotypes of Emmer wheat, that supplied the AB genomes to common wheat, are assumed to be Ne1ne2 or ne1ne2. T. dicoccoides spontaneo-nigrum, some forms of T. dicoccum, T. turgidum, T. persicum and T. orientale, and many varieties of T. durum have these genotypes.The donor of the D genome to common wheat must have possessed Ne3. All strains of Ae. squarrosa so far tested had this allele.5) The presumable hexaploid progenitor must have had either Ne1ne2Ne3 or ne1ne2Ne3. In common wheat, some forms of T. spelta, T. sphaerococcum, T. compactum and T. aestivum have these genotypes. T. macha, that is an exception in possessing the ne3 allele, is considered to be an isolated species among the hexaploids and seems not to have contributed to the origin of common wheat.6) It is suggested that Ne2 in common wheat originated at the hexaploid level rather than to have been derived from Emmer wheat. Possibility of selective advantage of Ne2 and disadvantage of Ne1 at the hexaploid level is suggested.","PeriodicalId":22578,"journal":{"name":"The Japanese Journal of Genetics","volume":"45 1","pages":"474-484"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Comparative Gene Analysis of Common Wheat and its Ancestral Species, I. Necrosis\",\"authors\":\"K. Tsunewaki, H. Kihara\",\"doi\":\"10.1266/JJG.37.474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1) It has been known that complementary necrosis in common wheat is mainly controlled by three genes, Ne1 located in chromosome 5B (V), Ne2 in 2A (XIII)and Ne3 in 3D (XVI). However, the B1 and F2 data from the cross T. macha subletshchumicum ×T. aestivum Chinese Spring indicated that a recessive gene in addition to the above-mentioned genes must be considered regarding the expression of necrosis.2) Relationships among various varieties of common wheat concerning necrosis are represented in the diagram of Fig. 2.3) Distribution of the three major genes in common wheat and its ancestors, Emmer wheat and Ae. squarrosa, was investigated using T. aestivum Prelude (Ne1ne2Ne3), T. aestivum Kharkov (ne1Ne2Ne3) and T. macha subletshchumicum (Ne1Ne2ne3) as test varieties.In Emmer wheat a majority of varieties were found to have the genotype Ne1ne2, while minor fractions were either ne1ne2 or Ne1Ne2.All strains of Ae. squarrosa so far tested had Ne3.In common wheat, most varieties were either ne1ne2Ne3 or ne1Ne2Ne3, while a small fraction were Ne1ne2Ne3. One variety only was found to be Ne1ne2ne3 and another only one to be Ne1Ne2ne3, both belonging to T. macha.4) From these results, the genotypes of Emmer wheat, that supplied the AB genomes to common wheat, are assumed to be Ne1ne2 or ne1ne2. T. dicoccoides spontaneo-nigrum, some forms of T. dicoccum, T. turgidum, T. persicum and T. orientale, and many varieties of T. durum have these genotypes.The donor of the D genome to common wheat must have possessed Ne3. All strains of Ae. squarrosa so far tested had this allele.5) The presumable hexaploid progenitor must have had either Ne1ne2Ne3 or ne1ne2Ne3. In common wheat, some forms of T. spelta, T. sphaerococcum, T. compactum and T. aestivum have these genotypes. T. macha, that is an exception in possessing the ne3 allele, is considered to be an isolated species among the hexaploids and seems not to have contributed to the origin of common wheat.6) It is suggested that Ne2 in common wheat originated at the hexaploid level rather than to have been derived from Emmer wheat. Possibility of selective advantage of Ne2 and disadvantage of Ne1 at the hexaploid level is suggested.\",\"PeriodicalId\":22578,\"journal\":{\"name\":\"The Japanese Journal of Genetics\",\"volume\":\"45 1\",\"pages\":\"474-484\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Japanese Journal of Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1266/JJG.37.474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Japanese Journal of Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1266/JJG.37.474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

1)已知普通小麦的补体坏死主要由3个基因控制,即位于5B染色体的Ne1 (V)、位于2A染色体的Ne2 (XIII)和位于3D染色体的Ne3 (XVI)。然而,来自杂交T. macha subletshchumicum ×T的B1和F2数据。aestivum Chinese Spring表明,坏死的表达除上述基因外,还必须考虑一个隐性基因。2)图2.3所示为普通小麦各品种间与坏死有关的关系。以T. aestivum Prelude (Ne1ne2Ne3)、T. aestivum Kharkov (Ne1ne2Ne3)和T. macha subletshchumicum (Ne1ne2Ne3)为试验品种。在二粒小麦中,大多数品种为Ne1ne2基因型,少数品种为Ne1ne2或Ne1ne2基因型。所有菌株Ae。到目前为止检测到的squarrosa含有Ne3。在普通小麦品种中,ne1ne2Ne3或ne1ne2Ne3品种居多,ne1ne2Ne3品种占少数。其中一个品种为Ne1ne2ne3,另一个品种为Ne1ne2ne3,这两个品种都属于T. macha。4)根据这些结果,可以假设为普通小麦提供AB基因组的Emmer小麦的基因型为Ne1ne2或Ne1ne2。硬粒绦虫(T. dicoccoides spontanenigrum)、某些形式的硬粒绦虫(T. dicoccuum)、膨胀绦虫(T. turgidum)、桃粉绦虫(T. persicum)和东方绦虫(T. orientale)以及许多硬粒绦虫变种都有这些基因型。普通小麦的D基因组供体必须拥有Ne3。所有菌株Ae。5)假定的六倍体祖先一定有Ne1ne2Ne3或Ne1ne2Ne3。在普通小麦中,某些形式的粗粒T.,球形T.,紧实T.和aestivum有这些基因型。具有ne3等位基因的T. macha被认为是六倍体中一个孤立的物种,似乎对普通小麦的起源没有贡献。6)普通小麦中的Ne2起源于六倍体水平,而不是来自二粒小麦。在六倍体水平上,Ne2可能具有选择性优势,而Ne1具有选择性劣势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Gene Analysis of Common Wheat and its Ancestral Species, I. Necrosis
1) It has been known that complementary necrosis in common wheat is mainly controlled by three genes, Ne1 located in chromosome 5B (V), Ne2 in 2A (XIII)and Ne3 in 3D (XVI). However, the B1 and F2 data from the cross T. macha subletshchumicum ×T. aestivum Chinese Spring indicated that a recessive gene in addition to the above-mentioned genes must be considered regarding the expression of necrosis.2) Relationships among various varieties of common wheat concerning necrosis are represented in the diagram of Fig. 2.3) Distribution of the three major genes in common wheat and its ancestors, Emmer wheat and Ae. squarrosa, was investigated using T. aestivum Prelude (Ne1ne2Ne3), T. aestivum Kharkov (ne1Ne2Ne3) and T. macha subletshchumicum (Ne1Ne2ne3) as test varieties.In Emmer wheat a majority of varieties were found to have the genotype Ne1ne2, while minor fractions were either ne1ne2 or Ne1Ne2.All strains of Ae. squarrosa so far tested had Ne3.In common wheat, most varieties were either ne1ne2Ne3 or ne1Ne2Ne3, while a small fraction were Ne1ne2Ne3. One variety only was found to be Ne1ne2ne3 and another only one to be Ne1Ne2ne3, both belonging to T. macha.4) From these results, the genotypes of Emmer wheat, that supplied the AB genomes to common wheat, are assumed to be Ne1ne2 or ne1ne2. T. dicoccoides spontaneo-nigrum, some forms of T. dicoccum, T. turgidum, T. persicum and T. orientale, and many varieties of T. durum have these genotypes.The donor of the D genome to common wheat must have possessed Ne3. All strains of Ae. squarrosa so far tested had this allele.5) The presumable hexaploid progenitor must have had either Ne1ne2Ne3 or ne1ne2Ne3. In common wheat, some forms of T. spelta, T. sphaerococcum, T. compactum and T. aestivum have these genotypes. T. macha, that is an exception in possessing the ne3 allele, is considered to be an isolated species among the hexaploids and seems not to have contributed to the origin of common wheat.6) It is suggested that Ne2 in common wheat originated at the hexaploid level rather than to have been derived from Emmer wheat. Possibility of selective advantage of Ne2 and disadvantage of Ne1 at the hexaploid level is suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Gene Analysis of Common Wheat and its Ancestral Species, I. Necrosis Chromosomal locations of isocitrate dehydrogenase and phosphoglucoisomerase gene loci in shallot (Allium cepa L. Aggregatum group) Cytogenetic evidence for cryptic structural hybridity causing intraspecific hybrid sterility in Aegilops caudata L.. Chromosomal locations of five isozyme gene loci (Lap-1, Got-1, 6-Pgdh-2, Adh-1 and Gdh-1) in shallot (Allium cepa L. Aggregatum group). Allozyme diversity and genetic structure in Korean populations of Eurya emarginata (Theaceae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1