气动弹性飞机模型的灵敏度分析方法

Anthony A. Giunta
{"title":"气动弹性飞机模型的灵敏度分析方法","authors":"Anthony A. Giunta","doi":"10.1016/S1369-8869(99)00016-6","DOIUrl":null,"url":null,"abstract":"<div><p>A novel method has been developed for calculating gradients of aerodynamic force<span><span> and moment coefficients for an aeroelastic aircraft model. This method is intended for use in preliminary-level aircraft design which typically involves computationally expensive aerodynamic and structural analyses. This method uses the global sensitivity equations (GSE) to express the aero-structural coupling in an aircraft model. In addition, a reduced-order </span>modal analysis<span> approach is employed to condense the coupling bandwidth between the aerodynamic and structural models. Coarse-grained parallel computing is applied to reduce the wall-clock computational time of the expensive aerodynamic analysis<span> needed in this sensitivity analysis method. A supersonic transport aircraft model is examined in this study, subject to Mach 2.4 cruise flight conditions. Aerodynamic analysis is performed using a NASA-developed Euler/Navier-Stokes solver, and structural analysis is performed using commercial finite element analysis software. The GSE/modal analysis method is used to compute the sensitivity of the aerodynamic performance<span> of the aircraft subject to perturbations in the angle-of-attack, wing sweep angle, and wing thickness. Good agreement is obtained between gradients computed with the GSE/modal analysis approach and the same quantities computed using a traditional, computationally expensive, finite difference approach. A cost analysis demonstrates that the GSE/modal analysis method is more computationally efficient than the traditional approach if gradients are needed for two or more aircraft design parameters.</span></span></span></span></p></div>","PeriodicalId":100070,"journal":{"name":"Aircraft Design","volume":"2 4","pages":"Pages 207-230"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1369-8869(99)00016-6","citationCount":"9","resultStr":"{\"title\":\"Sensitivity analysis method for aeroelastic aircraft models\",\"authors\":\"Anthony A. Giunta\",\"doi\":\"10.1016/S1369-8869(99)00016-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel method has been developed for calculating gradients of aerodynamic force<span><span> and moment coefficients for an aeroelastic aircraft model. This method is intended for use in preliminary-level aircraft design which typically involves computationally expensive aerodynamic and structural analyses. This method uses the global sensitivity equations (GSE) to express the aero-structural coupling in an aircraft model. In addition, a reduced-order </span>modal analysis<span> approach is employed to condense the coupling bandwidth between the aerodynamic and structural models. Coarse-grained parallel computing is applied to reduce the wall-clock computational time of the expensive aerodynamic analysis<span> needed in this sensitivity analysis method. A supersonic transport aircraft model is examined in this study, subject to Mach 2.4 cruise flight conditions. Aerodynamic analysis is performed using a NASA-developed Euler/Navier-Stokes solver, and structural analysis is performed using commercial finite element analysis software. The GSE/modal analysis method is used to compute the sensitivity of the aerodynamic performance<span> of the aircraft subject to perturbations in the angle-of-attack, wing sweep angle, and wing thickness. Good agreement is obtained between gradients computed with the GSE/modal analysis approach and the same quantities computed using a traditional, computationally expensive, finite difference approach. A cost analysis demonstrates that the GSE/modal analysis method is more computationally efficient than the traditional approach if gradients are needed for two or more aircraft design parameters.</span></span></span></span></p></div>\",\"PeriodicalId\":100070,\"journal\":{\"name\":\"Aircraft Design\",\"volume\":\"2 4\",\"pages\":\"Pages 207-230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1369-8869(99)00016-6\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aircraft Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369886999000166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aircraft Design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369886999000166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种计算气动弹性飞机模型的气动力梯度和力矩系数的新方法。这种方法是用于初级水平的飞机设计,通常涉及计算昂贵的空气动力学和结构分析。该方法采用全局灵敏度方程(GSE)来表达飞机模型中的气动-结构耦合。此外,采用降阶模态分析方法来压缩气动模型与结构模型之间的耦合带宽。该灵敏度分析方法采用了粗粒度并行计算,减少了昂贵的气动分析计算时间。本文研究了一种超音速运输机模型,在2.4马赫巡航飞行条件下。气动分析使用美国宇航局开发的欧拉/纳维-斯托克斯求解器进行,结构分析使用商用有限元分析软件进行。采用GSE/模态分析方法计算了飞机在迎角、机翼后掠角和机翼厚度扰动下的气动性能敏感性。使用GSE/模态分析方法计算的梯度与使用传统的计算昂贵的有限差分方法计算的相同数量的梯度之间获得了良好的一致性。成本分析表明,当两个或两个以上的飞机设计参数需要梯度时,GSE/模态分析方法比传统方法计算效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensitivity analysis method for aeroelastic aircraft models

A novel method has been developed for calculating gradients of aerodynamic force and moment coefficients for an aeroelastic aircraft model. This method is intended for use in preliminary-level aircraft design which typically involves computationally expensive aerodynamic and structural analyses. This method uses the global sensitivity equations (GSE) to express the aero-structural coupling in an aircraft model. In addition, a reduced-order modal analysis approach is employed to condense the coupling bandwidth between the aerodynamic and structural models. Coarse-grained parallel computing is applied to reduce the wall-clock computational time of the expensive aerodynamic analysis needed in this sensitivity analysis method. A supersonic transport aircraft model is examined in this study, subject to Mach 2.4 cruise flight conditions. Aerodynamic analysis is performed using a NASA-developed Euler/Navier-Stokes solver, and structural analysis is performed using commercial finite element analysis software. The GSE/modal analysis method is used to compute the sensitivity of the aerodynamic performance of the aircraft subject to perturbations in the angle-of-attack, wing sweep angle, and wing thickness. Good agreement is obtained between gradients computed with the GSE/modal analysis approach and the same quantities computed using a traditional, computationally expensive, finite difference approach. A cost analysis demonstrates that the GSE/modal analysis method is more computationally efficient than the traditional approach if gradients are needed for two or more aircraft design parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flying wing—problems and decisions Comparison of the specific energy demand of aeroplanes and other vehicle systems Failure management scheme for use in a flush air data system Thrust reverser modulation—a tool to command landing ground run Design of fiber metal laminate shear panels for ultra-high capacity aircraft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1