通过高级分析评估腐蚀锚链的疲劳寿命

Sue Wang, Xiying Zhang, Tom Kwan, Kai-tung Ma, Zhen Li, D. Baker, A. Izadparast, Gary H. Farrow, A. Potts, A. Nair, M. Prabhu, P. Vargas, I. Pérez, Meng Luo, E. Fontaine
{"title":"通过高级分析评估腐蚀锚链的疲劳寿命","authors":"Sue Wang, Xiying Zhang, Tom Kwan, Kai-tung Ma, Zhen Li, D. Baker, A. Izadparast, Gary H. Farrow, A. Potts, A. Nair, M. Prabhu, P. Vargas, I. Pérez, Meng Luo, E. Fontaine","doi":"10.4043/29449-MS","DOIUrl":null,"url":null,"abstract":"\n Evaluation of corroded chain link for continued use or life extension is a challenging task for the industry. ABS, together with fifteen (15) participating organizations, initiated the Fatigue of Corroded Chains (FoCCs) Joint Industry Project (JIP) in 2016. The objective of the FoCCs JIP is to investigate methodologies for assessing remaining fatigue life of the corroded mooring chain used for floating production systems. The JIP scope includes fatigue testing in labs and finite element analysis (FEA) of corroded chain samples retrieved from six floating production facilities in West Africa and the North Sea. The participating organizations include oil majors, chain manufactures, consulting firms, and classification societies, which represent a pool of broad range of mooring knowledge and experience. Knowledge gained from the JIP will be summarized and used toward the development of guidance notes for assessing fatigue life of corroded mooring chain for the industry.\n Six sets of mooring chain samples with different corrosion conditions have been collected, cleaned and digitally scanned for fatigue testing and FEA. Procedures for testing and analysis have been developed with the objective of establishing commonly accepted methods. Different FEA procedures have been studied for making a better prediction of stress ranges of the corroded chain links. The findings from the fatigue testing and FEA will be utilized as basis for further development of the methods for fatigue assessment of corroded mooring chain. This paper summarizes the tests and FE analysis work for the selected chain samples. The JIP research work has found that corrosion, either general corrosion or local/pitting corrosion, can significantly reduce the chain fatigue capacity. The location and the geometry of corrosion pits have more impact on fatigue lives than the pit size. The JIP study has shown that FE analysis is an effective tool to capture the hot spot of corroded chain links and can provide insight in their fatigue performance. Different methods on the assessment of the stress range of a hot spot are compared and discussed.","PeriodicalId":11149,"journal":{"name":"Day 1 Mon, May 06, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Assessing Fatigue Life of Corroded Mooring Chains Through Advanced Analysis\",\"authors\":\"Sue Wang, Xiying Zhang, Tom Kwan, Kai-tung Ma, Zhen Li, D. Baker, A. Izadparast, Gary H. Farrow, A. Potts, A. Nair, M. Prabhu, P. Vargas, I. Pérez, Meng Luo, E. Fontaine\",\"doi\":\"10.4043/29449-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Evaluation of corroded chain link for continued use or life extension is a challenging task for the industry. ABS, together with fifteen (15) participating organizations, initiated the Fatigue of Corroded Chains (FoCCs) Joint Industry Project (JIP) in 2016. The objective of the FoCCs JIP is to investigate methodologies for assessing remaining fatigue life of the corroded mooring chain used for floating production systems. The JIP scope includes fatigue testing in labs and finite element analysis (FEA) of corroded chain samples retrieved from six floating production facilities in West Africa and the North Sea. The participating organizations include oil majors, chain manufactures, consulting firms, and classification societies, which represent a pool of broad range of mooring knowledge and experience. Knowledge gained from the JIP will be summarized and used toward the development of guidance notes for assessing fatigue life of corroded mooring chain for the industry.\\n Six sets of mooring chain samples with different corrosion conditions have been collected, cleaned and digitally scanned for fatigue testing and FEA. Procedures for testing and analysis have been developed with the objective of establishing commonly accepted methods. Different FEA procedures have been studied for making a better prediction of stress ranges of the corroded chain links. The findings from the fatigue testing and FEA will be utilized as basis for further development of the methods for fatigue assessment of corroded mooring chain. This paper summarizes the tests and FE analysis work for the selected chain samples. The JIP research work has found that corrosion, either general corrosion or local/pitting corrosion, can significantly reduce the chain fatigue capacity. The location and the geometry of corrosion pits have more impact on fatigue lives than the pit size. The JIP study has shown that FE analysis is an effective tool to capture the hot spot of corroded chain links and can provide insight in their fatigue performance. Different methods on the assessment of the stress range of a hot spot are compared and discussed.\",\"PeriodicalId\":11149,\"journal\":{\"name\":\"Day 1 Mon, May 06, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, May 06, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29449-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, May 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29449-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对被腐蚀的链条进行评估以确保其继续使用或延长使用寿命是一项具有挑战性的任务。2016年,ABS与15个参与组织共同发起了腐蚀链疲劳联合工业项目(JIP)。FoCCs JIP的目的是研究用于浮式生产系统的腐蚀系泊链的剩余疲劳寿命评估方法。JIP范围包括实验室的疲劳测试和从西非和北海的六个浮式生产设施中提取的腐蚀链样品的有限元分析(FEA)。参与组织包括石油巨头、链条制造商、咨询公司和船级社,这些组织代表了广泛的系泊知识和经验。从JIP中获得的知识将被总结并用于制定行业评估腐蚀系泊链疲劳寿命的指导说明。收集了6组不同腐蚀条件下的锚链样品,进行了清洗和数字扫描,进行了疲劳测试和有限元分析。开发测试和分析程序的目的是建立普遍接受的方法。为了更好地预测腐蚀链条的应力范围,研究了不同的有限元分析方法。疲劳试验和有限元分析的结果将作为进一步开发腐蚀系泊链疲劳评估方法的基础。本文对所选链条样品的试验和有限元分析工作进行了总结。JIP的研究工作发现,无论是一般腐蚀还是局部/点蚀,腐蚀都会显著降低链条的疲劳能力。腐蚀坑的位置和几何形状对疲劳寿命的影响大于腐蚀坑的尺寸。JIP研究表明,有限元分析是一种有效的工具,可以捕捉腐蚀链条的热点,并可以深入了解其疲劳性能。对不同的热点应力范围评估方法进行了比较和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing Fatigue Life of Corroded Mooring Chains Through Advanced Analysis
Evaluation of corroded chain link for continued use or life extension is a challenging task for the industry. ABS, together with fifteen (15) participating organizations, initiated the Fatigue of Corroded Chains (FoCCs) Joint Industry Project (JIP) in 2016. The objective of the FoCCs JIP is to investigate methodologies for assessing remaining fatigue life of the corroded mooring chain used for floating production systems. The JIP scope includes fatigue testing in labs and finite element analysis (FEA) of corroded chain samples retrieved from six floating production facilities in West Africa and the North Sea. The participating organizations include oil majors, chain manufactures, consulting firms, and classification societies, which represent a pool of broad range of mooring knowledge and experience. Knowledge gained from the JIP will be summarized and used toward the development of guidance notes for assessing fatigue life of corroded mooring chain for the industry. Six sets of mooring chain samples with different corrosion conditions have been collected, cleaned and digitally scanned for fatigue testing and FEA. Procedures for testing and analysis have been developed with the objective of establishing commonly accepted methods. Different FEA procedures have been studied for making a better prediction of stress ranges of the corroded chain links. The findings from the fatigue testing and FEA will be utilized as basis for further development of the methods for fatigue assessment of corroded mooring chain. This paper summarizes the tests and FE analysis work for the selected chain samples. The JIP research work has found that corrosion, either general corrosion or local/pitting corrosion, can significantly reduce the chain fatigue capacity. The location and the geometry of corrosion pits have more impact on fatigue lives than the pit size. The JIP study has shown that FE analysis is an effective tool to capture the hot spot of corroded chain links and can provide insight in their fatigue performance. Different methods on the assessment of the stress range of a hot spot are compared and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Detailed Look into the 2017 SNAME OC-8 Comparative Wind Load Study A Family of Practical Foundation Models for Dynamic Analyses of Offshore Wind Turbines Turret-Moored FPSO Yaw Motions in a Squall-Prone Region Ultra-Long Subsea Gas Condensate Tie Back – Pseudo Dry Gas – Liquid Handling System Deepwater Opportunities Extra Long Oil Tiebacks Developments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1