GGBFS对“高效减水剂”油井水泥浆流变和抗压强度的影响

Wissal Ali Hussein, A. Ali, Qahtan Suleman Noaman
{"title":"GGBFS对“高效减水剂”油井水泥浆流变和抗压强度的影响","authors":"Wissal Ali Hussein, A. Ali, Qahtan Suleman Noaman","doi":"10.4028/p-y8EY5B","DOIUrl":null,"url":null,"abstract":"Cementing around the casing in oil and gas wells provides proper zonal isolation, holds the casing in place, and prevents fluid migration is an important part of the completing process and well plugging for abandonment. A reliable cement rheology prediction is central to the success of oil well-cementing operations. Properties of the rheological are plastic viscosity and yield stress by using advanced shear-stress/shear-strain controlled Viscometer with using Ground Granulated Blast Furnaces Slug, and Superplasticizer investigated. The effect replacement of Class G cement according to API [1]. (American petroleum institute) classification is performed at different rates. (15%-75%) Blast Furnaces Slag (GGBFS) at intervals of 15%. Further, by using different curing conditions (moist curing and @38°C, @60°C water path curing chamber). The results show that blended cement with 45% of GGBFS has significantly increased in compressive strength more than unblended cement type G. This happened because the fine micro GGBS influences the heat of hydration through the pozzolanic reaction and the effect of superplasticizer. The double effect of GGBS and Superplasticizer on the plastic viscosity and yield point, the linear relationship between shear stress and shear rate, by using Bingham plastic Fluid Model, the slurries act as Newtonian behavior at high shear.","PeriodicalId":10603,"journal":{"name":"Construction Technologies and Architecture","volume":"24 1","pages":"57 - 68"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of GGBFS on the Rheological and Compressive Strength Properties of Oil well Cement Slurries by Using \\\"Superplasticizer\\\"\",\"authors\":\"Wissal Ali Hussein, A. Ali, Qahtan Suleman Noaman\",\"doi\":\"10.4028/p-y8EY5B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cementing around the casing in oil and gas wells provides proper zonal isolation, holds the casing in place, and prevents fluid migration is an important part of the completing process and well plugging for abandonment. A reliable cement rheology prediction is central to the success of oil well-cementing operations. Properties of the rheological are plastic viscosity and yield stress by using advanced shear-stress/shear-strain controlled Viscometer with using Ground Granulated Blast Furnaces Slug, and Superplasticizer investigated. The effect replacement of Class G cement according to API [1]. (American petroleum institute) classification is performed at different rates. (15%-75%) Blast Furnaces Slag (GGBFS) at intervals of 15%. Further, by using different curing conditions (moist curing and @38°C, @60°C water path curing chamber). The results show that blended cement with 45% of GGBFS has significantly increased in compressive strength more than unblended cement type G. This happened because the fine micro GGBS influences the heat of hydration through the pozzolanic reaction and the effect of superplasticizer. The double effect of GGBS and Superplasticizer on the plastic viscosity and yield point, the linear relationship between shear stress and shear rate, by using Bingham plastic Fluid Model, the slurries act as Newtonian behavior at high shear.\",\"PeriodicalId\":10603,\"journal\":{\"name\":\"Construction Technologies and Architecture\",\"volume\":\"24 1\",\"pages\":\"57 - 68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction Technologies and Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-y8EY5B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Technologies and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-y8EY5B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在油气井中,套管周围的固井可以提供适当的层间隔离,保持套管的位置,防止流体运移,这是完井过程和弃井封堵的重要组成部分。可靠的水泥流变性预测是油井固井作业成功的关键。利用先进的剪切-应力/剪切-应变控制粘度计,研究了矿渣和高效减水剂的塑性粘度和屈服应力。按照API[1]更换G类水泥的效果。(美国石油学会)分级是按不同的速率进行的。(15%-75%)高炉炉渣(GGBFS),间隔15%。进一步,通过使用不同的养护条件(湿养护和@38℃、@60℃水路养护室)。结果表明,掺入45% GGBS的水泥抗压强度明显高于未掺入g型水泥,这是由于微细GGBS通过火山灰反应和高效减水剂的作用影响水化热。GGBS和高效减水剂对浆料塑性黏度和屈服点的双重影响,剪切应力与剪切速率的线性关系,采用Bingham塑性流体模型,在高剪切下浆料表现为牛顿力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of GGBFS on the Rheological and Compressive Strength Properties of Oil well Cement Slurries by Using "Superplasticizer"
Cementing around the casing in oil and gas wells provides proper zonal isolation, holds the casing in place, and prevents fluid migration is an important part of the completing process and well plugging for abandonment. A reliable cement rheology prediction is central to the success of oil well-cementing operations. Properties of the rheological are plastic viscosity and yield stress by using advanced shear-stress/shear-strain controlled Viscometer with using Ground Granulated Blast Furnaces Slug, and Superplasticizer investigated. The effect replacement of Class G cement according to API [1]. (American petroleum institute) classification is performed at different rates. (15%-75%) Blast Furnaces Slag (GGBFS) at intervals of 15%. Further, by using different curing conditions (moist curing and @38°C, @60°C water path curing chamber). The results show that blended cement with 45% of GGBFS has significantly increased in compressive strength more than unblended cement type G. This happened because the fine micro GGBS influences the heat of hydration through the pozzolanic reaction and the effect of superplasticizer. The double effect of GGBS and Superplasticizer on the plastic viscosity and yield point, the linear relationship between shear stress and shear rate, by using Bingham plastic Fluid Model, the slurries act as Newtonian behavior at high shear.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lantana Camara Plant-Biochar Added Cementitious Mortar for Carbon Sequestration: Effect on Early-Age Properties An Experimental Study on the Mechanical Properties of Concrete by Using Human Hair Fiber as Reinforcement Designing a Material Database for the Flood-Resistant Housing An Experimental Study on Mechanical Properties of Concrete by Using Various Types of Coarse Aggregates of Different Quarries Progressive Pushover Analysis of a Reinforced Concrete Bridge of Pakistan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1