土方车辆动力系统建模与多变量控制

Rong Zhang, Eko Prasetiawan, A. Alleyne
{"title":"土方车辆动力系统建模与多变量控制","authors":"Rong Zhang, Eko Prasetiawan, A. Alleyne","doi":"10.1115/imece2001/dsc-24564","DOIUrl":null,"url":null,"abstract":"\n Coordination of the power distribution in a Multi-Input Multi-Output (MIMO) electrohydraulic transmission is investigated for the case of an earthmoving vehicle powertrain. A generalized model of a representative system is presented along with the development of both H2 and H∞ MIMO controller designs. The controllers are developed based on a linearized model of the system about some nominal operating point Multiple inputs are coordinated to control multiple load outputs simultaneously. Since typical MIMO electrohydraulic transmission systems have significant nonlinear dynamics that vary with system operating conditions, a robust controller design is paramount The increased robustness of the H∞ controller over the H2 scheme is demonstrated qualitatively in the time domain through both disturbance rejection and trajectory tracking comparisons. A frequency domain criterion quantitatively provides quantifiable comparisons between the two methods. Hardware-in-the-Loop experiments validate the modeling and control performance on an Earthmoving Vehicle Powertrain Simulator (EVPS).","PeriodicalId":90691,"journal":{"name":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling and Multivariable Control of an Earthmoving Vehicle Powertrain\",\"authors\":\"Rong Zhang, Eko Prasetiawan, A. Alleyne\",\"doi\":\"10.1115/imece2001/dsc-24564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Coordination of the power distribution in a Multi-Input Multi-Output (MIMO) electrohydraulic transmission is investigated for the case of an earthmoving vehicle powertrain. A generalized model of a representative system is presented along with the development of both H2 and H∞ MIMO controller designs. The controllers are developed based on a linearized model of the system about some nominal operating point Multiple inputs are coordinated to control multiple load outputs simultaneously. Since typical MIMO electrohydraulic transmission systems have significant nonlinear dynamics that vary with system operating conditions, a robust controller design is paramount The increased robustness of the H∞ controller over the H2 scheme is demonstrated qualitatively in the time domain through both disturbance rejection and trajectory tracking comparisons. A frequency domain criterion quantitatively provides quantifiable comparisons between the two methods. Hardware-in-the-Loop experiments validate the modeling and control performance on an Earthmoving Vehicle Powertrain Simulator (EVPS).\",\"PeriodicalId\":90691,\"journal\":{\"name\":\"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/dsc-24564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/dsc-24564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

以土方车辆动力系统为例,研究了多输入多输出(MIMO)电液传动系统的功率分配协调问题。随着H2和H∞MIMO控制器设计的发展,提出了代表性系统的广义模型。该控制器是基于系统关于某个标称工作点的线性化模型开发的,多个输入协调以同时控制多个负载输出。由于典型的MIMO电液传动系统具有随系统运行条件而变化的显著非线性动力学,因此鲁棒控制器设计至关重要。通过干扰抑制和轨迹跟踪比较,在时域定性地证明了H∞控制器在H2方案上的鲁棒性增加。频域判据定量地提供了两种方法之间的可量化比较。硬件在环实验验证了在土方车辆动力系统模拟器(EVPS)上的建模和控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and Multivariable Control of an Earthmoving Vehicle Powertrain
Coordination of the power distribution in a Multi-Input Multi-Output (MIMO) electrohydraulic transmission is investigated for the case of an earthmoving vehicle powertrain. A generalized model of a representative system is presented along with the development of both H2 and H∞ MIMO controller designs. The controllers are developed based on a linearized model of the system about some nominal operating point Multiple inputs are coordinated to control multiple load outputs simultaneously. Since typical MIMO electrohydraulic transmission systems have significant nonlinear dynamics that vary with system operating conditions, a robust controller design is paramount The increased robustness of the H∞ controller over the H2 scheme is demonstrated qualitatively in the time domain through both disturbance rejection and trajectory tracking comparisons. A frequency domain criterion quantitatively provides quantifiable comparisons between the two methods. Hardware-in-the-Loop experiments validate the modeling and control performance on an Earthmoving Vehicle Powertrain Simulator (EVPS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STEERABLE NEEDLE TRAJECTORY FOLLOWING IN THE LUNG: TORSIONAL DEADBAND COMPENSATION AND FULL POSE ESTIMATION WITH 5DOF FEEDBACK FOR NEEDLES PASSING THROUGH FLEXIBLE ENDOSCOPES. A SERIES ELASTIC ACTUATOR DESIGN AND CONTROL IN A LINKAGE BASED HAND EXOSKELETON. OBSERVER-BASED CONTROL OF A DUAL-STAGE PIEZOELECTRIC SCANNER. HUMAN-INSPIRED ALGEBRAIC CURVES FOR WEARABLE ROBOT CONTROL. CONTROLLING PHYSICAL INTERACTIONS: HUMANS DO NOT MINIMIZE MUSCLE EFFORT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1