基于高斯-马尔可夫方法的数字血管造影三维结构识别

R. Petrocelli, K. Manbeck, J. Elion
{"title":"基于高斯-马尔可夫方法的数字血管造影三维结构识别","authors":"R. Petrocelli, K. Manbeck, J. Elion","doi":"10.1109/CIC.1993.378494","DOIUrl":null,"url":null,"abstract":"Existing methods for automatically finding arteries in coronary angiograms rely on preprocessing (digital subtraction or edge enhancement). Structure recognition in unprocessed images will enable the analysis of a wider range clinical images (of varying quality). The authors have previously reported on a prototype which works on such unsubtracted and unprocessed digital angiograms. They now present a system designed to process image pairs and thereby perform recognition in three dimensions. This approach, the \"Deformable Template Matcher\" (DTM), combines a-priori knowledge of the arterial tree (encoded as mathematical \"templates\") with a stochastic deformation process described by a hidden Markov model. An introduction so the technique is presented along with examples of its application to bi-plane images and a discussion of the computational implications.<<ETX>>","PeriodicalId":20445,"journal":{"name":"Proceedings of Computers in Cardiology Conference","volume":"53 1","pages":"101-104"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Three dimensional structure recognition in digital angiograms using Gauss-Markov methods\",\"authors\":\"R. Petrocelli, K. Manbeck, J. Elion\",\"doi\":\"10.1109/CIC.1993.378494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing methods for automatically finding arteries in coronary angiograms rely on preprocessing (digital subtraction or edge enhancement). Structure recognition in unprocessed images will enable the analysis of a wider range clinical images (of varying quality). The authors have previously reported on a prototype which works on such unsubtracted and unprocessed digital angiograms. They now present a system designed to process image pairs and thereby perform recognition in three dimensions. This approach, the \\\"Deformable Template Matcher\\\" (DTM), combines a-priori knowledge of the arterial tree (encoded as mathematical \\\"templates\\\") with a stochastic deformation process described by a hidden Markov model. An introduction so the technique is presented along with examples of its application to bi-plane images and a discussion of the computational implications.<<ETX>>\",\"PeriodicalId\":20445,\"journal\":{\"name\":\"Proceedings of Computers in Cardiology Conference\",\"volume\":\"53 1\",\"pages\":\"101-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Computers in Cardiology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.1993.378494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Computers in Cardiology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.1993.378494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

目前在冠状动脉造影中自动发现动脉的方法依赖于预处理(数字减法或边缘增强)。未处理图像中的结构识别将使分析更大范围的临床图像(不同质量)成为可能。作者以前曾报道过一个原型,该原型可用于这种未减法和未处理的数字血管造影。他们现在提出了一个系统,旨在处理图像对,从而进行三维识别。这种方法,即“可变形模板匹配器”(DTM),将动脉树的先验知识(编码为数学“模板”)与由隐马尔可夫模型描述的随机变形过程相结合。介绍了该技术,并给出了其在双平面图像中的应用示例和计算意义的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three dimensional structure recognition in digital angiograms using Gauss-Markov methods
Existing methods for automatically finding arteries in coronary angiograms rely on preprocessing (digital subtraction or edge enhancement). Structure recognition in unprocessed images will enable the analysis of a wider range clinical images (of varying quality). The authors have previously reported on a prototype which works on such unsubtracted and unprocessed digital angiograms. They now present a system designed to process image pairs and thereby perform recognition in three dimensions. This approach, the "Deformable Template Matcher" (DTM), combines a-priori knowledge of the arterial tree (encoded as mathematical "templates") with a stochastic deformation process described by a hidden Markov model. An introduction so the technique is presented along with examples of its application to bi-plane images and a discussion of the computational implications.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 528 channel system for the acquisition and display of defibrillation and electrocardiographic potentials Computers: the heart of screening Signal averaging enhancement by jitter deconvolution Numerical simulation of the flow in model skeletal muscle ventricles Transmembrane potential changes during stimulation in a bidomain model of the myocardium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1