基于信号分解技术的微电网电能质量评估

Rasmi Ranjan Panigrahi, M. Biswal, Manohar Mishra
{"title":"基于信号分解技术的微电网电能质量评估","authors":"Rasmi Ranjan Panigrahi, M. Biswal, Manohar Mishra","doi":"10.1109/AISP53593.2022.9760627","DOIUrl":null,"url":null,"abstract":"In this work, a report on different signal decomposition techniques (time-frequency TF) applied to power quality (PQ) events are provided. In a system with hybrid renewable sources, nonlinear load points and capacitor bank, the operation of individual units can affect the quality of the signals while switching from one state to another or during varying operating modes. In this context, the grid operating state is another concern which cannot be neglected. Considering the different possible operating states and operating conditions of system and individual equipment, different signal decomposition techniques are selected and the responses for individual events are analyzed. The Empirical Mode Decomposition (EMD), Ensembled Empirical Mode Decomposition (EEMD) and Intrinsic Time Decomposition (ITD) techniques are selected for signal analysis. Cases such as noise, harmonics, voltage sag, and nonlinear load switching events are simulated and presented in the work.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"36 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Quality Assessment in a Microgrid System using Signal Decomposition Techniques\",\"authors\":\"Rasmi Ranjan Panigrahi, M. Biswal, Manohar Mishra\",\"doi\":\"10.1109/AISP53593.2022.9760627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a report on different signal decomposition techniques (time-frequency TF) applied to power quality (PQ) events are provided. In a system with hybrid renewable sources, nonlinear load points and capacitor bank, the operation of individual units can affect the quality of the signals while switching from one state to another or during varying operating modes. In this context, the grid operating state is another concern which cannot be neglected. Considering the different possible operating states and operating conditions of system and individual equipment, different signal decomposition techniques are selected and the responses for individual events are analyzed. The Empirical Mode Decomposition (EMD), Ensembled Empirical Mode Decomposition (EEMD) and Intrinsic Time Decomposition (ITD) techniques are selected for signal analysis. Cases such as noise, harmonics, voltage sag, and nonlinear load switching events are simulated and presented in the work.\",\"PeriodicalId\":6793,\"journal\":{\"name\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"volume\":\"36 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP53593.2022.9760627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,提供了应用于电能质量(PQ)事件的不同信号分解技术(时频TF)的报告。在具有混合可再生能源、非线性负载点和电容器组的系统中,当从一种状态切换到另一种状态或在不同的工作模式期间,单个单元的运行会影响信号的质量。在这种情况下,电网的运行状态是另一个不容忽视的问题。考虑到系统和单个设备可能的不同运行状态和运行条件,选择了不同的信号分解技术,并分析了单个事件的响应。选择经验模态分解(EMD)、集成经验模态分解(EEMD)和固有时间分解(ITD)技术进行信号分析。文中还对噪声、谐波、电压暂降和非线性负载切换事件进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Quality Assessment in a Microgrid System using Signal Decomposition Techniques
In this work, a report on different signal decomposition techniques (time-frequency TF) applied to power quality (PQ) events are provided. In a system with hybrid renewable sources, nonlinear load points and capacitor bank, the operation of individual units can affect the quality of the signals while switching from one state to another or during varying operating modes. In this context, the grid operating state is another concern which cannot be neglected. Considering the different possible operating states and operating conditions of system and individual equipment, different signal decomposition techniques are selected and the responses for individual events are analyzed. The Empirical Mode Decomposition (EMD), Ensembled Empirical Mode Decomposition (EEMD) and Intrinsic Time Decomposition (ITD) techniques are selected for signal analysis. Cases such as noise, harmonics, voltage sag, and nonlinear load switching events are simulated and presented in the work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 5.80 GHz Harmonic Suppression Antenna for Wireless Energy Transfer Application Crack identification from concrete structure images using deep transfer learning Energy Efficient VoD with Cache in TWDM PON ring Blockchain-based IoT Device Security A New Dynamic Method of Multiprocessor Scheduling using Modified Crow Search Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1