{"title":"从海星卵母细胞中纯化的蛋白酶体及其参与卵母细胞成熟的催化亚基的酶学性质","authors":"Etsuko Tanaka , Michiko Takagi Sawada , Hitoshi Sawada","doi":"10.1016/S0742-8413(99)00104-8","DOIUrl":null,"url":null,"abstract":"<div><p>The 20S proteasome was purified from oocytes of the starfish <em>Asterina pectinifera</em> and its enzymatic properties were investigated. The chymotrypsin-like activities were potently inhibited by PSI as well as MG115, whereas the trypsin-like and peptidyl-glutamyl peptide-hydrolyzing (PGPH) activities were not or only weakly inhibited by PSI and MG115. The inhibitory ability of MG115 toward germinal vesicle breakdown (GVBD) coincided with those toward the trypsin-like and PGPH activities, and PSI showed no inhibitory effect on GVBD. We have previously reported that the inhibition pattern toward GVBD of peptidyl-argininals, which potently inhibited the proteasomal trypsin-like activity rather than the chymotrypsin-like activity, correlated with the inhibition pattern toward the chymotrypsin-like activity of the proteasome. These results, together with the peptidyl-argininals scarcely inhibiting the PGPH activity at concentrations sufficient for the inhibition toward GVBD, indicate that both the chymotrypsin-like and trypsin-like activities, but not the PGPH activity, of the proteasome are responsible for degradation of the physiological substrate during starfish oocyte maturation. It was also suggested that the inhibition of a single catalytic site of the proteasome is not sufficient for prevention of the proteasomal function.</p></div>","PeriodicalId":10586,"journal":{"name":"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0742-8413(99)00104-8","citationCount":"16","resultStr":"{\"title\":\"Enzymatic properties of the proteasome purified from starfish oocytes and its catalytic subunits involved in oocyte maturation\",\"authors\":\"Etsuko Tanaka , Michiko Takagi Sawada , Hitoshi Sawada\",\"doi\":\"10.1016/S0742-8413(99)00104-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The 20S proteasome was purified from oocytes of the starfish <em>Asterina pectinifera</em> and its enzymatic properties were investigated. The chymotrypsin-like activities were potently inhibited by PSI as well as MG115, whereas the trypsin-like and peptidyl-glutamyl peptide-hydrolyzing (PGPH) activities were not or only weakly inhibited by PSI and MG115. The inhibitory ability of MG115 toward germinal vesicle breakdown (GVBD) coincided with those toward the trypsin-like and PGPH activities, and PSI showed no inhibitory effect on GVBD. We have previously reported that the inhibition pattern toward GVBD of peptidyl-argininals, which potently inhibited the proteasomal trypsin-like activity rather than the chymotrypsin-like activity, correlated with the inhibition pattern toward the chymotrypsin-like activity of the proteasome. These results, together with the peptidyl-argininals scarcely inhibiting the PGPH activity at concentrations sufficient for the inhibition toward GVBD, indicate that both the chymotrypsin-like and trypsin-like activities, but not the PGPH activity, of the proteasome are responsible for degradation of the physiological substrate during starfish oocyte maturation. It was also suggested that the inhibition of a single catalytic site of the proteasome is not sufficient for prevention of the proteasomal function.</p></div>\",\"PeriodicalId\":10586,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0742-8413(99)00104-8\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0742841399001048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0742841399001048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enzymatic properties of the proteasome purified from starfish oocytes and its catalytic subunits involved in oocyte maturation
The 20S proteasome was purified from oocytes of the starfish Asterina pectinifera and its enzymatic properties were investigated. The chymotrypsin-like activities were potently inhibited by PSI as well as MG115, whereas the trypsin-like and peptidyl-glutamyl peptide-hydrolyzing (PGPH) activities were not or only weakly inhibited by PSI and MG115. The inhibitory ability of MG115 toward germinal vesicle breakdown (GVBD) coincided with those toward the trypsin-like and PGPH activities, and PSI showed no inhibitory effect on GVBD. We have previously reported that the inhibition pattern toward GVBD of peptidyl-argininals, which potently inhibited the proteasomal trypsin-like activity rather than the chymotrypsin-like activity, correlated with the inhibition pattern toward the chymotrypsin-like activity of the proteasome. These results, together with the peptidyl-argininals scarcely inhibiting the PGPH activity at concentrations sufficient for the inhibition toward GVBD, indicate that both the chymotrypsin-like and trypsin-like activities, but not the PGPH activity, of the proteasome are responsible for degradation of the physiological substrate during starfish oocyte maturation. It was also suggested that the inhibition of a single catalytic site of the proteasome is not sufficient for prevention of the proteasomal function.