M. Capek, M. Blažíková, Ivan Novotny, H. Chmelova, D. Svoboda, B. Radochová, J. Janáček, Ondrej Horvath
{"title":"斐济基于小波的图像去噪,在结构照明显微镜中的应用实例","authors":"M. Capek, M. Blažíková, Ivan Novotny, H. Chmelova, D. Svoboda, B. Radochová, J. Janáček, Ondrej Horvath","doi":"10.5566/IAS.2432","DOIUrl":null,"url":null,"abstract":"Filtration of super-resolved microscopic images brings often troubles with removing undesired image parts like, e.g., noise, inhomogenous background and reconstruction artifacts. Standard filtration techniques, e.g., convolution- or Fourier transform-based methods are not always appropriate, since they may lower image resolution that was acquired by hi-tech and expensive microscopy systems. Thus, in this article it is proposed to filter such images using discrete wavelet transform (DWT). Newly developed Wavelet_Denoise plugin for free available Fiji software package demonstrates important possibilities of applying DWT to images: Decomposition of a filtered picture using various wavelet filters and levels of details with showing decomposed images and visualization of effects of back transformation of the picture with chosen level of suppression or denoising of wavelet coefficients. The Fiji framework allows, for example, using a plethora of various microscopic image formats for data opening, users can easily install the plugin through a menu command and the plugin supports processing 3D images in Z-stacks. The application of the plugin for removal of reconstruction artifacts and undesirable background in images acquired by super-resolved structured illumination microscopy is demonstrated as well.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"38 1","pages":"3-16"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Wavelet-Based Denoising Of Images in Fiji, With Example Applications in Structured Illumination Microscopy\",\"authors\":\"M. Capek, M. Blažíková, Ivan Novotny, H. Chmelova, D. Svoboda, B. Radochová, J. Janáček, Ondrej Horvath\",\"doi\":\"10.5566/IAS.2432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Filtration of super-resolved microscopic images brings often troubles with removing undesired image parts like, e.g., noise, inhomogenous background and reconstruction artifacts. Standard filtration techniques, e.g., convolution- or Fourier transform-based methods are not always appropriate, since they may lower image resolution that was acquired by hi-tech and expensive microscopy systems. Thus, in this article it is proposed to filter such images using discrete wavelet transform (DWT). Newly developed Wavelet_Denoise plugin for free available Fiji software package demonstrates important possibilities of applying DWT to images: Decomposition of a filtered picture using various wavelet filters and levels of details with showing decomposed images and visualization of effects of back transformation of the picture with chosen level of suppression or denoising of wavelet coefficients. The Fiji framework allows, for example, using a plethora of various microscopic image formats for data opening, users can easily install the plugin through a menu command and the plugin supports processing 3D images in Z-stacks. The application of the plugin for removal of reconstruction artifacts and undesirable background in images acquired by super-resolved structured illumination microscopy is demonstrated as well.\",\"PeriodicalId\":49062,\"journal\":{\"name\":\"Image Analysis & Stereology\",\"volume\":\"38 1\",\"pages\":\"3-16\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Analysis & Stereology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5566/IAS.2432\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.2432","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
The Wavelet-Based Denoising Of Images in Fiji, With Example Applications in Structured Illumination Microscopy
Filtration of super-resolved microscopic images brings often troubles with removing undesired image parts like, e.g., noise, inhomogenous background and reconstruction artifacts. Standard filtration techniques, e.g., convolution- or Fourier transform-based methods are not always appropriate, since they may lower image resolution that was acquired by hi-tech and expensive microscopy systems. Thus, in this article it is proposed to filter such images using discrete wavelet transform (DWT). Newly developed Wavelet_Denoise plugin for free available Fiji software package demonstrates important possibilities of applying DWT to images: Decomposition of a filtered picture using various wavelet filters and levels of details with showing decomposed images and visualization of effects of back transformation of the picture with chosen level of suppression or denoising of wavelet coefficients. The Fiji framework allows, for example, using a plethora of various microscopic image formats for data opening, users can easily install the plugin through a menu command and the plugin supports processing 3D images in Z-stacks. The application of the plugin for removal of reconstruction artifacts and undesirable background in images acquired by super-resolved structured illumination microscopy is demonstrated as well.
期刊介绍:
Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.