{"title":"利用魔笛手效应——通过音乐向六年级学生教授编程的案例","authors":"I. Lavy","doi":"10.15388/infedu.2023.06","DOIUrl":null,"url":null,"abstract":"This paper describes a pilot study that explores students learning how to program via a multi-disciplinary approach. The study participants were eleven 6th grade students who learned programming fundamentals via music activities in a Scratch 3.0 environment. These activities included the programming of familiar melodies and the development of suitable animations or computer games. For that matter, a study unit termed MelodyCode was developed in the spirit of the STEAM education approach and the spiral learning method and included exploration tasks based on individual learning. Via the programming of familiar melodies, they became acquainted with programming concepts such as functions, variables, repetition and control commands, parallel processes, and more. Competitions that win awards were held from time to time, which prompted students to invest efforts in their projects to reach first place and gain the teacher and classmates' appreciation. The study was conducted in the form of action research. The data analysis yielded references to the effect of MelodyCode on common stereotypes students hold regarding programming (masculine profession, necessitates good mathematics knowledge), cognitive aspects (cognitive load, linking music concrete use to abstract programming concepts), and affective aspects (joyful and relaxing class atmosphere, motivation, curiosity, self-efficacy).","PeriodicalId":45270,"journal":{"name":"Informatics in Education","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging the Pied Piper effect -The case of teaching programming to sixth-grade students via music\",\"authors\":\"I. Lavy\",\"doi\":\"10.15388/infedu.2023.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a pilot study that explores students learning how to program via a multi-disciplinary approach. The study participants were eleven 6th grade students who learned programming fundamentals via music activities in a Scratch 3.0 environment. These activities included the programming of familiar melodies and the development of suitable animations or computer games. For that matter, a study unit termed MelodyCode was developed in the spirit of the STEAM education approach and the spiral learning method and included exploration tasks based on individual learning. Via the programming of familiar melodies, they became acquainted with programming concepts such as functions, variables, repetition and control commands, parallel processes, and more. Competitions that win awards were held from time to time, which prompted students to invest efforts in their projects to reach first place and gain the teacher and classmates' appreciation. The study was conducted in the form of action research. The data analysis yielded references to the effect of MelodyCode on common stereotypes students hold regarding programming (masculine profession, necessitates good mathematics knowledge), cognitive aspects (cognitive load, linking music concrete use to abstract programming concepts), and affective aspects (joyful and relaxing class atmosphere, motivation, curiosity, self-efficacy).\",\"PeriodicalId\":45270,\"journal\":{\"name\":\"Informatics in Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15388/infedu.2023.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/infedu.2023.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Leveraging the Pied Piper effect -The case of teaching programming to sixth-grade students via music
This paper describes a pilot study that explores students learning how to program via a multi-disciplinary approach. The study participants were eleven 6th grade students who learned programming fundamentals via music activities in a Scratch 3.0 environment. These activities included the programming of familiar melodies and the development of suitable animations or computer games. For that matter, a study unit termed MelodyCode was developed in the spirit of the STEAM education approach and the spiral learning method and included exploration tasks based on individual learning. Via the programming of familiar melodies, they became acquainted with programming concepts such as functions, variables, repetition and control commands, parallel processes, and more. Competitions that win awards were held from time to time, which prompted students to invest efforts in their projects to reach first place and gain the teacher and classmates' appreciation. The study was conducted in the form of action research. The data analysis yielded references to the effect of MelodyCode on common stereotypes students hold regarding programming (masculine profession, necessitates good mathematics knowledge), cognitive aspects (cognitive load, linking music concrete use to abstract programming concepts), and affective aspects (joyful and relaxing class atmosphere, motivation, curiosity, self-efficacy).
期刊介绍:
INFORMATICS IN EDUCATION publishes original articles about theoretical, experimental and methodological studies in the fields of informatics (computer science) education and educational applications of information technology, ranging from primary to tertiary education. Multidisciplinary research studies that enhance our understanding of how theoretical and technological innovations translate into educational practice are most welcome. We are particularly interested in work at boundaries, both the boundaries of informatics and of education. The topics covered by INFORMATICS IN EDUCATION will range across diverse aspects of informatics (computer science) education research including: empirical studies, including composing different approaches to teach various subjects, studying availability of various concepts at a given age, measuring knowledge transfer and skills developed, addressing gender issues, etc. statistical research on big data related to informatics (computer science) activities including e.g. research on assessment, online teaching, competitions, etc. educational engineering focusing mainly on developing high quality original teaching sequences of different informatics (computer science) topics that offer new, successful ways for knowledge transfer and development of computational thinking machine learning of student''s behavior including the use of information technology to observe students in the learning process and discovering clusters of their working design and evaluation of educational tools that apply information technology in novel ways.