{"title":"基于软计算技术动态度量的软件可重用性评估","authors":"Manju Duhan, P. Bhatia","doi":"10.47839/ijc.21.2.2587","DOIUrl":null,"url":null,"abstract":"Dynamic metrics capture the run time features of object-oriented languages, i.e., runtime polymorphism, dynamic binding, etc., that are not covered by static metrics. Therefore, in this paper, we derived a new approach to measuring the software reusability of a design pattern based on dynamic metrics. To achieve this, the authors proposed a model based on five parameters, i.e., polymorphism, inheritance, number of children, coupling, and complexity, to measure the reusability factor by using various soft computing techniques, i.e., Fuzzy, Neural Network, and Neuro-Fuzzy. Further, we also compared the proposed model with four existing machine learning algorithms. Lastly, we found that the proposed model using the neuro-fuzzy technique is trained well and predicts well with MAE (Mean absolute error) 0.003 and RMSE (Root mean square error) 0.009 based on dynamic metrics. Hence, it is concluded that dynamic metrics are a better predictor of the reusability factor than static metrics.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Software Reusability Estimation based on Dynamic Metrics using Soft Computing Techniques\",\"authors\":\"Manju Duhan, P. Bhatia\",\"doi\":\"10.47839/ijc.21.2.2587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic metrics capture the run time features of object-oriented languages, i.e., runtime polymorphism, dynamic binding, etc., that are not covered by static metrics. Therefore, in this paper, we derived a new approach to measuring the software reusability of a design pattern based on dynamic metrics. To achieve this, the authors proposed a model based on five parameters, i.e., polymorphism, inheritance, number of children, coupling, and complexity, to measure the reusability factor by using various soft computing techniques, i.e., Fuzzy, Neural Network, and Neuro-Fuzzy. Further, we also compared the proposed model with four existing machine learning algorithms. Lastly, we found that the proposed model using the neuro-fuzzy technique is trained well and predicts well with MAE (Mean absolute error) 0.003 and RMSE (Root mean square error) 0.009 based on dynamic metrics. Hence, it is concluded that dynamic metrics are a better predictor of the reusability factor than static metrics.\",\"PeriodicalId\":37669,\"journal\":{\"name\":\"International Journal of Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47839/ijc.21.2.2587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.21.2.2587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
摘要
动态度量捕获了面向对象语言的运行时特性,例如,运行时多态性、动态绑定等,这些都不是静态度量所涵盖的。因此,在本文中,我们推导了一种基于动态度量来度量设计模式的软件可重用性的新方法。为了实现这一目标,作者提出了一个基于多态性、继承性、子节点数、耦合性和复杂性五个参数的模型,利用模糊、神经网络和神经模糊等多种软计算技术来衡量可重用性因子。此外,我们还将所提出的模型与四种现有的机器学习算法进行了比较。最后,我们发现使用神经模糊技术的模型训练良好,并且基于动态指标的MAE (Mean absolute error) 0.003和RMSE (Root Mean square error) 0.009的预测效果良好。因此,可以得出结论,动态度量比静态度量更能预测可重用性因素。
Software Reusability Estimation based on Dynamic Metrics using Soft Computing Techniques
Dynamic metrics capture the run time features of object-oriented languages, i.e., runtime polymorphism, dynamic binding, etc., that are not covered by static metrics. Therefore, in this paper, we derived a new approach to measuring the software reusability of a design pattern based on dynamic metrics. To achieve this, the authors proposed a model based on five parameters, i.e., polymorphism, inheritance, number of children, coupling, and complexity, to measure the reusability factor by using various soft computing techniques, i.e., Fuzzy, Neural Network, and Neuro-Fuzzy. Further, we also compared the proposed model with four existing machine learning algorithms. Lastly, we found that the proposed model using the neuro-fuzzy technique is trained well and predicts well with MAE (Mean absolute error) 0.003 and RMSE (Root mean square error) 0.009 based on dynamic metrics. Hence, it is concluded that dynamic metrics are a better predictor of the reusability factor than static metrics.
期刊介绍:
The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.