基于支持向量机的移动认知无线电曼哈顿城市环境频谱分配方案

Yao Wang, Yi Zhang, Jiamei Chen, Yang Long, Yang Yang
{"title":"基于支持向量机的移动认知无线电曼哈顿城市环境频谱分配方案","authors":"Yao Wang, Yi Zhang, Jiamei Chen, Yang Long, Yang Yang","doi":"10.1109/ICIVC50857.2020.9177436","DOIUrl":null,"url":null,"abstract":"Cognitive radio (CR) is proposed as a critical means to reuse the primary spectrum in recent years. However, the cognitive node mobility has not fully researched for the mobile cognitive radio networks (CRNs). In this paper, a support vector machine (SVM) based spectrum assignment scheme is presented in the Manhattan city mobility environments, which takes the position and speed information of cognitive nodes into consideration during the spectrum availability prediction. Numerical results show good performance in the total spectrum utilization comparing with the traditional resource allocation algorithms.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"18 1","pages":"283-286"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Support Vector Machine Based Spectrum Allocation Scheme for the Mobile Cognitive Radio Manhattan City Environments\",\"authors\":\"Yao Wang, Yi Zhang, Jiamei Chen, Yang Long, Yang Yang\",\"doi\":\"10.1109/ICIVC50857.2020.9177436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive radio (CR) is proposed as a critical means to reuse the primary spectrum in recent years. However, the cognitive node mobility has not fully researched for the mobile cognitive radio networks (CRNs). In this paper, a support vector machine (SVM) based spectrum assignment scheme is presented in the Manhattan city mobility environments, which takes the position and speed information of cognitive nodes into consideration during the spectrum availability prediction. Numerical results show good performance in the total spectrum utilization comparing with the traditional resource allocation algorithms.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"18 1\",\"pages\":\"283-286\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

认知无线电(CR)是近年来提出的一种重要的主频谱复用方法。然而,对于移动认知无线网络(crn)的认知节点移动性研究尚不充分。本文提出了一种基于支持向量机(SVM)的曼哈顿城市交通环境下的频谱分配方案,该方案在频谱可用性预测中考虑了认知节点的位置和速度信息。数值结果表明,与传统的资源分配算法相比,该算法在总频谱利用率方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Support Vector Machine Based Spectrum Allocation Scheme for the Mobile Cognitive Radio Manhattan City Environments
Cognitive radio (CR) is proposed as a critical means to reuse the primary spectrum in recent years. However, the cognitive node mobility has not fully researched for the mobile cognitive radio networks (CRNs). In this paper, a support vector machine (SVM) based spectrum assignment scheme is presented in the Manhattan city mobility environments, which takes the position and speed information of cognitive nodes into consideration during the spectrum availability prediction. Numerical results show good performance in the total spectrum utilization comparing with the traditional resource allocation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Multi-object Tracking with Siamese Network and Optical Flow Research on Product Style Design Based on Genetic Algorithm Super-Resolution Reconstruction Algorithm of Target Image Based on Learning Background Air Quality Inference with Deep Convolutional Conditional Random Field Feature Point Extraction and Matching Method Based on Akaze in Illumination Invariant Color Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1