A. Cadix, S. Meeker, Swati Kaushik, Elodie Haumesser, G. Ovarlez
{"title":"联合微凝胶,新型自适应系统,用于控制固井中的流体漏失","authors":"A. Cadix, S. Meeker, Swati Kaushik, Elodie Haumesser, G. Ovarlez","doi":"10.2118/207472-ms","DOIUrl":null,"url":null,"abstract":"\n Fluid loss control additives are critical constituents in a cement slurry formulation to ensure even cement placement and ultimately satisfactory zonal isolation. Many technological options have been developed over the past decades to design fluid loss control additives for cementing. The most popular technologies as of today are either based on water soluble polymers or colloidal particles like latexes. As an alternative approach, in this paper we introduce a new technology based on associative or \"sticky\" microgels. These microgels are able to associate with one another at elevated concentration but, more surprisingly, are also able to associate under shear in the dilute regime during a filtration process. As a consequence these additives demonstrate outstanding performance as fluid loss control agents.\n This study focuses first on standard API filtration tests using sticky microgels, and on how their behavior in application differs from traditional systems, in particular water-based soluble polymers such as cellulosic derivatives or synthetic polymers. Our investigations then focus on the working mechanism of the microgel system by analyzing adsorption on the cement surface, rheology, and filter cake structure using Mercury Intrusion Porosimetry (MIP). Finally the behavior of sticky microgels in model filtration tests is explored with either filtration against porous ceramic discs or using microfluidic chips allowing a direct visualization of microgels during filtration.\n This study demonstrates that associative microgels are not controlling fluid loss through a simple size match between particles and pores within the filter cake but rather through shear-induced aggregation. Microfluidic observations reveal that aggregation occurs irreversibly as microgels are forced through the pores as the filtration process occurs. The shear-induced associated gels are particularly effective at reducing dramatically the filter cake permeability and allowing gas migration control. Interestingly the shear-induced aggregation of associative μgels seems to confer self-adaptive properties of the fluid loss additives with respect to the pore network to be clogged. Indeed, formation of shear aggregated gels larger than the individual microgels can be used to limit fluid loss even if the pore sizes are much larger than the individual microgels.","PeriodicalId":10959,"journal":{"name":"Day 3 Wed, November 17, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Associative Microgels, New Self Adaptive Systems to Control Fluid Loss in Well Cementing\",\"authors\":\"A. Cadix, S. Meeker, Swati Kaushik, Elodie Haumesser, G. Ovarlez\",\"doi\":\"10.2118/207472-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fluid loss control additives are critical constituents in a cement slurry formulation to ensure even cement placement and ultimately satisfactory zonal isolation. Many technological options have been developed over the past decades to design fluid loss control additives for cementing. The most popular technologies as of today are either based on water soluble polymers or colloidal particles like latexes. As an alternative approach, in this paper we introduce a new technology based on associative or \\\"sticky\\\" microgels. These microgels are able to associate with one another at elevated concentration but, more surprisingly, are also able to associate under shear in the dilute regime during a filtration process. As a consequence these additives demonstrate outstanding performance as fluid loss control agents.\\n This study focuses first on standard API filtration tests using sticky microgels, and on how their behavior in application differs from traditional systems, in particular water-based soluble polymers such as cellulosic derivatives or synthetic polymers. Our investigations then focus on the working mechanism of the microgel system by analyzing adsorption on the cement surface, rheology, and filter cake structure using Mercury Intrusion Porosimetry (MIP). Finally the behavior of sticky microgels in model filtration tests is explored with either filtration against porous ceramic discs or using microfluidic chips allowing a direct visualization of microgels during filtration.\\n This study demonstrates that associative microgels are not controlling fluid loss through a simple size match between particles and pores within the filter cake but rather through shear-induced aggregation. Microfluidic observations reveal that aggregation occurs irreversibly as microgels are forced through the pores as the filtration process occurs. The shear-induced associated gels are particularly effective at reducing dramatically the filter cake permeability and allowing gas migration control. Interestingly the shear-induced aggregation of associative μgels seems to confer self-adaptive properties of the fluid loss additives with respect to the pore network to be clogged. Indeed, formation of shear aggregated gels larger than the individual microgels can be used to limit fluid loss even if the pore sizes are much larger than the individual microgels.\",\"PeriodicalId\":10959,\"journal\":{\"name\":\"Day 3 Wed, November 17, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, November 17, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207472-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207472-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Associative Microgels, New Self Adaptive Systems to Control Fluid Loss in Well Cementing
Fluid loss control additives are critical constituents in a cement slurry formulation to ensure even cement placement and ultimately satisfactory zonal isolation. Many technological options have been developed over the past decades to design fluid loss control additives for cementing. The most popular technologies as of today are either based on water soluble polymers or colloidal particles like latexes. As an alternative approach, in this paper we introduce a new technology based on associative or "sticky" microgels. These microgels are able to associate with one another at elevated concentration but, more surprisingly, are also able to associate under shear in the dilute regime during a filtration process. As a consequence these additives demonstrate outstanding performance as fluid loss control agents.
This study focuses first on standard API filtration tests using sticky microgels, and on how their behavior in application differs from traditional systems, in particular water-based soluble polymers such as cellulosic derivatives or synthetic polymers. Our investigations then focus on the working mechanism of the microgel system by analyzing adsorption on the cement surface, rheology, and filter cake structure using Mercury Intrusion Porosimetry (MIP). Finally the behavior of sticky microgels in model filtration tests is explored with either filtration against porous ceramic discs or using microfluidic chips allowing a direct visualization of microgels during filtration.
This study demonstrates that associative microgels are not controlling fluid loss through a simple size match between particles and pores within the filter cake but rather through shear-induced aggregation. Microfluidic observations reveal that aggregation occurs irreversibly as microgels are forced through the pores as the filtration process occurs. The shear-induced associated gels are particularly effective at reducing dramatically the filter cake permeability and allowing gas migration control. Interestingly the shear-induced aggregation of associative μgels seems to confer self-adaptive properties of the fluid loss additives with respect to the pore network to be clogged. Indeed, formation of shear aggregated gels larger than the individual microgels can be used to limit fluid loss even if the pore sizes are much larger than the individual microgels.