基于动态样本权值衰减的浅网络训练——一种用于强化学习的势函数逼近器

Leo Ghignone, M. Barlow
{"title":"基于动态样本权值衰减的浅网络训练——一种用于强化学习的势函数逼近器","authors":"Leo Ghignone, M. Barlow","doi":"10.1109/SSCI44817.2019.9003124","DOIUrl":null,"url":null,"abstract":"Neural Networks are commonly used as function approximators in Reinforcement Learning, and the Extreme Learning Machine is one of the best algorithms to quickly train a shallow network. The online and sequential version OS-ELM could be a great candidate to quickly train a network to be a function approximator for Reinforcement Learning, but due to its non-forgetting properties it is actually not suitable for direct use with value estimations that improve in accuracy over time. This paper presents an alternative Neural Network training algorithm based on OS-ELM, which is able to perform learning online while dynamically modifying the weights of previously learned samples in order to decrease the importance of old samples learned over time. A mathematical derivation of the formulas used is presented, along with results of experiments showing equivalence of our algorithm to ELM when learning classic datasets and the advantage provided when dealing with Reinforcement Learning data.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"11 1","pages":"149-154"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shallow Network Training With Dynamic Sample Weights Decay - a Potential Function Approximator for Reinforcement Learning\",\"authors\":\"Leo Ghignone, M. Barlow\",\"doi\":\"10.1109/SSCI44817.2019.9003124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural Networks are commonly used as function approximators in Reinforcement Learning, and the Extreme Learning Machine is one of the best algorithms to quickly train a shallow network. The online and sequential version OS-ELM could be a great candidate to quickly train a network to be a function approximator for Reinforcement Learning, but due to its non-forgetting properties it is actually not suitable for direct use with value estimations that improve in accuracy over time. This paper presents an alternative Neural Network training algorithm based on OS-ELM, which is able to perform learning online while dynamically modifying the weights of previously learned samples in order to decrease the importance of old samples learned over time. A mathematical derivation of the formulas used is presented, along with results of experiments showing equivalence of our algorithm to ELM when learning classic datasets and the advantage provided when dealing with Reinforcement Learning data.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"11 1\",\"pages\":\"149-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9003124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

神经网络是强化学习中常用的函数逼近器,而极限学习机是快速训练浅层网络的最佳算法之一。在线和顺序版本的OS-ELM可能是快速训练网络成为强化学习的函数逼近器的一个很好的候选,但由于它的不遗忘特性,它实际上不适合直接用于随着时间的推移而提高精度的值估计。本文提出了一种基于OS-ELM的替代神经网络训练算法,该算法能够在线进行学习,同时动态修改先前学习样本的权重,以降低随着时间推移学习的旧样本的重要性。本文给出了所用公式的数学推导,以及在学习经典数据集时我们的算法与ELM等效的实验结果,以及在处理强化学习数据时提供的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shallow Network Training With Dynamic Sample Weights Decay - a Potential Function Approximator for Reinforcement Learning
Neural Networks are commonly used as function approximators in Reinforcement Learning, and the Extreme Learning Machine is one of the best algorithms to quickly train a shallow network. The online and sequential version OS-ELM could be a great candidate to quickly train a network to be a function approximator for Reinforcement Learning, but due to its non-forgetting properties it is actually not suitable for direct use with value estimations that improve in accuracy over time. This paper presents an alternative Neural Network training algorithm based on OS-ELM, which is able to perform learning online while dynamically modifying the weights of previously learned samples in order to decrease the importance of old samples learned over time. A mathematical derivation of the formulas used is presented, along with results of experiments showing equivalence of our algorithm to ELM when learning classic datasets and the advantage provided when dealing with Reinforcement Learning data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1