用分布语义模型分析话语共同体

Igor Brigadir, Derek Greene, P. Cunningham
{"title":"用分布语义模型分析话语共同体","authors":"Igor Brigadir, Derek Greene, P. Cunningham","doi":"10.1145/2786451.2786470","DOIUrl":null,"url":null,"abstract":"This paper presents a new corpus-driven approach applicable to the study of language patterns in social and political contexts, or Critical Discourse Analysis (CDA) using Distributional Semantic Models (DSMs). This approach considers changes in word semantics, both over time and between communities with differing viewpoints. The geometrical spaces constructed by DSMs or \"word spaces\" offer an objective, robust exploratory analysis tool for revealing novel patterns and similarities between communities, as well as highlighting when these changes occur. To quantify differences between word spaces built on different time periods and from different communities, we analyze the nearest neighboring words in the DSM, a process we relate to analyzing \"concordance lines\". This makes the approach intuitive and interpretable to practitioners. We demonstrate the usefulness of the approach with two case studies, following groups with opposing political ideologies in the Scottish Independence Referendum, and the US Midterm Elections 2014.","PeriodicalId":93136,"journal":{"name":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","volume":"48 18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Analyzing Discourse Communities with Distributional Semantic Models\",\"authors\":\"Igor Brigadir, Derek Greene, P. Cunningham\",\"doi\":\"10.1145/2786451.2786470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new corpus-driven approach applicable to the study of language patterns in social and political contexts, or Critical Discourse Analysis (CDA) using Distributional Semantic Models (DSMs). This approach considers changes in word semantics, both over time and between communities with differing viewpoints. The geometrical spaces constructed by DSMs or \\\"word spaces\\\" offer an objective, robust exploratory analysis tool for revealing novel patterns and similarities between communities, as well as highlighting when these changes occur. To quantify differences between word spaces built on different time periods and from different communities, we analyze the nearest neighboring words in the DSM, a process we relate to analyzing \\\"concordance lines\\\". This makes the approach intuitive and interpretable to practitioners. We demonstrate the usefulness of the approach with two case studies, following groups with opposing political ideologies in the Scottish Independence Referendum, and the US Midterm Elections 2014.\",\"PeriodicalId\":93136,\"journal\":{\"name\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"volume\":\"48 18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2786451.2786470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786451.2786470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了一种新的语料库驱动方法,适用于社会和政治语境中的语言模式研究,或使用分布式语义模型(dsm)进行批评话语分析(CDA)。这种方法考虑了单词语义的变化,包括随着时间的推移和不同观点的群体之间的变化。由dsm构建的几何空间或“词空间”提供了一个客观、强大的探索性分析工具,用于揭示社区之间的新模式和相似性,以及突出显示这些变化发生的时间。为了量化建立在不同时期和不同社区的词空间之间的差异,我们分析了DSM中最近的相邻词,这一过程与分析“和谐线”有关。这使得该方法对实践者来说是直观和可解释的。我们通过两个案例研究证明了该方法的有效性,分别是在苏格兰独立公投和2014年美国中期选举中,关注政治意识形态对立的群体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing Discourse Communities with Distributional Semantic Models
This paper presents a new corpus-driven approach applicable to the study of language patterns in social and political contexts, or Critical Discourse Analysis (CDA) using Distributional Semantic Models (DSMs). This approach considers changes in word semantics, both over time and between communities with differing viewpoints. The geometrical spaces constructed by DSMs or "word spaces" offer an objective, robust exploratory analysis tool for revealing novel patterns and similarities between communities, as well as highlighting when these changes occur. To quantify differences between word spaces built on different time periods and from different communities, we analyze the nearest neighboring words in the DSM, a process we relate to analyzing "concordance lines". This makes the approach intuitive and interpretable to practitioners. We demonstrate the usefulness of the approach with two case studies, following groups with opposing political ideologies in the Scottish Independence Referendum, and the US Midterm Elections 2014.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opinions on Homeopathy for COVID-19 on Twitter. An Initial Study of Depression Detection on Mandarin Textual through BERT Model WebSci '22: 14th ACM Web Science Conference 2022, Barcelona, Spain, June 26 - 29, 2022 WebSci '21: 13th ACM Web Science Conference 2021, Virtual Event, United Kingdom, 21-25 June, 2021, Companion Publication In conversation with Martha Lane Fox and Wendy Hall on the Future of the Internet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1