{"title":"用分布语义模型分析话语共同体","authors":"Igor Brigadir, Derek Greene, P. Cunningham","doi":"10.1145/2786451.2786470","DOIUrl":null,"url":null,"abstract":"This paper presents a new corpus-driven approach applicable to the study of language patterns in social and political contexts, or Critical Discourse Analysis (CDA) using Distributional Semantic Models (DSMs). This approach considers changes in word semantics, both over time and between communities with differing viewpoints. The geometrical spaces constructed by DSMs or \"word spaces\" offer an objective, robust exploratory analysis tool for revealing novel patterns and similarities between communities, as well as highlighting when these changes occur. To quantify differences between word spaces built on different time periods and from different communities, we analyze the nearest neighboring words in the DSM, a process we relate to analyzing \"concordance lines\". This makes the approach intuitive and interpretable to practitioners. We demonstrate the usefulness of the approach with two case studies, following groups with opposing political ideologies in the Scottish Independence Referendum, and the US Midterm Elections 2014.","PeriodicalId":93136,"journal":{"name":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","volume":"48 18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Analyzing Discourse Communities with Distributional Semantic Models\",\"authors\":\"Igor Brigadir, Derek Greene, P. Cunningham\",\"doi\":\"10.1145/2786451.2786470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new corpus-driven approach applicable to the study of language patterns in social and political contexts, or Critical Discourse Analysis (CDA) using Distributional Semantic Models (DSMs). This approach considers changes in word semantics, both over time and between communities with differing viewpoints. The geometrical spaces constructed by DSMs or \\\"word spaces\\\" offer an objective, robust exploratory analysis tool for revealing novel patterns and similarities between communities, as well as highlighting when these changes occur. To quantify differences between word spaces built on different time periods and from different communities, we analyze the nearest neighboring words in the DSM, a process we relate to analyzing \\\"concordance lines\\\". This makes the approach intuitive and interpretable to practitioners. We demonstrate the usefulness of the approach with two case studies, following groups with opposing political ideologies in the Scottish Independence Referendum, and the US Midterm Elections 2014.\",\"PeriodicalId\":93136,\"journal\":{\"name\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"volume\":\"48 18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2786451.2786470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786451.2786470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyzing Discourse Communities with Distributional Semantic Models
This paper presents a new corpus-driven approach applicable to the study of language patterns in social and political contexts, or Critical Discourse Analysis (CDA) using Distributional Semantic Models (DSMs). This approach considers changes in word semantics, both over time and between communities with differing viewpoints. The geometrical spaces constructed by DSMs or "word spaces" offer an objective, robust exploratory analysis tool for revealing novel patterns and similarities between communities, as well as highlighting when these changes occur. To quantify differences between word spaces built on different time periods and from different communities, we analyze the nearest neighboring words in the DSM, a process we relate to analyzing "concordance lines". This makes the approach intuitive and interpretable to practitioners. We demonstrate the usefulness of the approach with two case studies, following groups with opposing political ideologies in the Scottish Independence Referendum, and the US Midterm Elections 2014.