基于手套的手语识别解决方案,帮助聋人交流

Jose Emiliano Lopez-Noriega, Miguel Ivan Fernandez-Valladares, Víctor Uc Cetina
{"title":"基于手套的手语识别解决方案,帮助聋人交流","authors":"Jose Emiliano Lopez-Noriega, Miguel Ivan Fernandez-Valladares, Víctor Uc Cetina","doi":"10.1109/ICEEE.2014.6978268","DOIUrl":null,"url":null,"abstract":"This manuscript presents the research and development of a software that help deaf-mute communication by identifying the position of the fingers of the hand with 5DT gloves. The sign language is adopted by nearly all people with hearing deficiency, making it their main form of communication, but this communication is only successfully achieved if all the participants of the conversation are familiar with the sign language. The goal is to be able to translate hand signs into words and phrases with the possibility to send audio signals to allow deaf-mute users to communicate to people not familiar with the sign language. The recognition of hand gestures is accomplished using a neural network tested using five different training algorithms. A cross-validation experiment is provided to illustrate the robustness of our methods.","PeriodicalId":6661,"journal":{"name":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"81 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Glove-based sign language recognition solution to assist communication for deaf users\",\"authors\":\"Jose Emiliano Lopez-Noriega, Miguel Ivan Fernandez-Valladares, Víctor Uc Cetina\",\"doi\":\"10.1109/ICEEE.2014.6978268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript presents the research and development of a software that help deaf-mute communication by identifying the position of the fingers of the hand with 5DT gloves. The sign language is adopted by nearly all people with hearing deficiency, making it their main form of communication, but this communication is only successfully achieved if all the participants of the conversation are familiar with the sign language. The goal is to be able to translate hand signs into words and phrases with the possibility to send audio signals to allow deaf-mute users to communicate to people not familiar with the sign language. The recognition of hand gestures is accomplished using a neural network tested using five different training algorithms. A cross-validation experiment is provided to illustrate the robustness of our methods.\",\"PeriodicalId\":6661,\"journal\":{\"name\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"81 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2014.6978268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2014.6978268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了一种软件的研究和开发,该软件通过使用5DT手套识别手部手指的位置来帮助聋哑人进行交流。几乎所有的听障人士都使用手语,使之成为他们主要的交流方式,但这种交流只有在对话的所有参与者都熟悉手语的情况下才能成功地实现。其目标是能够将手语翻译成单词和短语,并有可能发送音频信号,让聋哑人与不熟悉手语的人交流。手势的识别是通过使用五种不同的训练算法测试的神经网络来完成的。交叉验证实验说明了我们的方法的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Glove-based sign language recognition solution to assist communication for deaf users
This manuscript presents the research and development of a software that help deaf-mute communication by identifying the position of the fingers of the hand with 5DT gloves. The sign language is adopted by nearly all people with hearing deficiency, making it their main form of communication, but this communication is only successfully achieved if all the participants of the conversation are familiar with the sign language. The goal is to be able to translate hand signs into words and phrases with the possibility to send audio signals to allow deaf-mute users to communicate to people not familiar with the sign language. The recognition of hand gestures is accomplished using a neural network tested using five different training algorithms. A cross-validation experiment is provided to illustrate the robustness of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a vision algorithm for close-range relative navigation of underwater vehicles Fabrication of Pure Tin Oxide Pellets at Different Annealed Temperatures for CO and C3H8 Gas Sensors Study of sensing properties of ZnTe synthesized by mechanosynthesis for detecting gas CO ECG Arrhythmia Classification for Comparing Pre-Trained Deep Learning Models Reduction Of Energy Consumption in NoC Through The Application Of Novel Encoding Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1