基于卷积深度信念网络的直流XLPE电缆局部放电图像分类

Guanglei Huang, W. Cao, Xiaolei Xie, Zilong Li, Zhe Li, G. Sheng
{"title":"基于卷积深度信念网络的直流XLPE电缆局部放电图像分类","authors":"Guanglei Huang, W. Cao, Xiaolei Xie, Zilong Li, Zhe Li, G. Sheng","doi":"10.1109/CMD.2018.8535602","DOIUrl":null,"url":null,"abstract":"The classification of partial discharge is of significance to diagnose the defects in high voltage cable systems. To improve the insulation defect classification accuracy at DC cross linked polyethylene(XLPE) cables, a new method used for PD images classification based on convolutional deep belief network (CDBN) is proposed in this paper. Firstly, four kinds of defects in XLPE cables are designed and tested under DC voltage. The q-Δt-n image is constructed based on PD signal collected by HFCT. Then the diagnostic CDBN model is constructed to extract the high-level detailed feature of q-Δt-n images with Gaussian visible units. Finally, classification experiments with CDBN, deep belief network(DBN), support vector machine(SVM) and backpropagation neural network(BPNN) is conducted. The experiment results show that the proposed method has higher classification accuracy of insulation defect diagnosis.","PeriodicalId":6529,"journal":{"name":"2018 Condition Monitoring and Diagnosis (CMD)","volume":"40 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of Partial Discharge Images within DC XLPE Cables Based on Convolutional Deep Belief Network\",\"authors\":\"Guanglei Huang, W. Cao, Xiaolei Xie, Zilong Li, Zhe Li, G. Sheng\",\"doi\":\"10.1109/CMD.2018.8535602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classification of partial discharge is of significance to diagnose the defects in high voltage cable systems. To improve the insulation defect classification accuracy at DC cross linked polyethylene(XLPE) cables, a new method used for PD images classification based on convolutional deep belief network (CDBN) is proposed in this paper. Firstly, four kinds of defects in XLPE cables are designed and tested under DC voltage. The q-Δt-n image is constructed based on PD signal collected by HFCT. Then the diagnostic CDBN model is constructed to extract the high-level detailed feature of q-Δt-n images with Gaussian visible units. Finally, classification experiments with CDBN, deep belief network(DBN), support vector machine(SVM) and backpropagation neural network(BPNN) is conducted. The experiment results show that the proposed method has higher classification accuracy of insulation defect diagnosis.\",\"PeriodicalId\":6529,\"journal\":{\"name\":\"2018 Condition Monitoring and Diagnosis (CMD)\",\"volume\":\"40 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Condition Monitoring and Diagnosis (CMD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMD.2018.8535602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Condition Monitoring and Diagnosis (CMD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMD.2018.8535602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

局部放电的分类对高压电缆系统的缺陷诊断具有重要意义。为了提高直流交联聚乙烯(XLPE)电缆绝缘缺陷的分类精度,提出了一种基于卷积深度信念网络(CDBN)的PD图像分类新方法。首先,设计并测试了交联聚乙烯电缆在直流电压下的四种缺陷。基于HFCT采集的PD信号构建q-Δt-n图像。然后构建诊断CDBN模型,提取具有高斯可见单元的q张-Δt-n图像的高级细节特征。最后,对CDBN、深度信念网络(DBN)、支持向量机(SVM)和反向传播神经网络(BPNN)进行分类实验。实验结果表明,该方法对绝缘缺陷诊断具有较高的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Partial Discharge Images within DC XLPE Cables Based on Convolutional Deep Belief Network
The classification of partial discharge is of significance to diagnose the defects in high voltage cable systems. To improve the insulation defect classification accuracy at DC cross linked polyethylene(XLPE) cables, a new method used for PD images classification based on convolutional deep belief network (CDBN) is proposed in this paper. Firstly, four kinds of defects in XLPE cables are designed and tested under DC voltage. The q-Δt-n image is constructed based on PD signal collected by HFCT. Then the diagnostic CDBN model is constructed to extract the high-level detailed feature of q-Δt-n images with Gaussian visible units. Finally, classification experiments with CDBN, deep belief network(DBN), support vector machine(SVM) and backpropagation neural network(BPNN) is conducted. The experiment results show that the proposed method has higher classification accuracy of insulation defect diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author/Paper Index Partial Discharge Analysis on-site in Various High Voltage Apparatus A Novel Anomaly Localization Method on PMU Measure System Based on LS and PCA Effects of Revulcanization on XLPE Crystalline Morphology and AC Breakdown Performance Impact of Voltage Harmonics on Condition Assessment of Polluted Insulator through a Simulation Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1