通过API语义增强最先进的分类器来检测进化的Android恶意软件

Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun Zhang, Mi Zhang, Min Yang
{"title":"通过API语义增强最先进的分类器来检测进化的Android恶意软件","authors":"Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun Zhang, Mi Zhang, Min Yang","doi":"10.1145/3372297.3417291","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) classifiers have been widely deployed to detect Android malware, but at the same time the application of ML classifiers also faces an emerging problem. The performance of such classifiers degrades---or called ages---significantly over time given the malware evolution. Prior works have proposed to use retraining or active learning to reverse and improve aged models. However, the underlying classifier itself is still blind, unaware of malware evolution. Unsurprisingly, such evolution-insensitive retraining or active learning comes at a price, i.e., the labeling of tens of thousands of malware samples and the cost of significant human efforts. In this paper, we propose the first framework, called APIGraph, to enhance state-of-the-art malware classifiers with the similarity information among evolved Android malware in terms of semantically-equivalent or similar API usages, thus naturally slowing down classifier aging. Our evaluation shows that because of the slow-down of classifier aging, APIGraph saves significant amounts of human efforts required by active learning in labeling new malware samples.","PeriodicalId":20481,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"Enhancing State-of-the-art Classifiers with API Semantics to Detect Evolved Android Malware\",\"authors\":\"Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun Zhang, Mi Zhang, Min Yang\",\"doi\":\"10.1145/3372297.3417291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) classifiers have been widely deployed to detect Android malware, but at the same time the application of ML classifiers also faces an emerging problem. The performance of such classifiers degrades---or called ages---significantly over time given the malware evolution. Prior works have proposed to use retraining or active learning to reverse and improve aged models. However, the underlying classifier itself is still blind, unaware of malware evolution. Unsurprisingly, such evolution-insensitive retraining or active learning comes at a price, i.e., the labeling of tens of thousands of malware samples and the cost of significant human efforts. In this paper, we propose the first framework, called APIGraph, to enhance state-of-the-art malware classifiers with the similarity information among evolved Android malware in terms of semantically-equivalent or similar API usages, thus naturally slowing down classifier aging. Our evaluation shows that because of the slow-down of classifier aging, APIGraph saves significant amounts of human efforts required by active learning in labeling new malware samples.\",\"PeriodicalId\":20481,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372297.3417291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372297.3417291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

机器学习(ML)分类器已经被广泛应用于检测Android恶意软件,但与此同时,机器学习分类器的应用也面临着一个新出现的问题。鉴于恶意软件的演变,这种分类器的性能会随着时间的推移而显著下降——或者称为年龄。先前的研究已经提出使用再训练或主动学习来逆转和改进老化的模型。然而,底层分类器本身仍然是盲目的,不知道恶意软件的演变。不出所料,这种对进化不敏感的再训练或主动学习是有代价的,也就是说,要给成千上万的恶意软件样本贴上标签,还要付出大量的人力成本。在本文中,我们提出了第一个名为APIGraph的框架,利用Android恶意软件在语义等效或类似API用法方面的相似信息来增强最先进的恶意软件分类器,从而自然地减缓分类器的老化。我们的评估表明,由于分类器老化的减缓,APIGraph在标记新的恶意软件样本时节省了主动学习所需的大量人力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing State-of-the-art Classifiers with API Semantics to Detect Evolved Android Malware
Machine learning (ML) classifiers have been widely deployed to detect Android malware, but at the same time the application of ML classifiers also faces an emerging problem. The performance of such classifiers degrades---or called ages---significantly over time given the malware evolution. Prior works have proposed to use retraining or active learning to reverse and improve aged models. However, the underlying classifier itself is still blind, unaware of malware evolution. Unsurprisingly, such evolution-insensitive retraining or active learning comes at a price, i.e., the labeling of tens of thousands of malware samples and the cost of significant human efforts. In this paper, we propose the first framework, called APIGraph, to enhance state-of-the-art malware classifiers with the similarity information among evolved Android malware in terms of semantically-equivalent or similar API usages, thus naturally slowing down classifier aging. Our evaluation shows that because of the slow-down of classifier aging, APIGraph saves significant amounts of human efforts required by active learning in labeling new malware samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Session 1D: Applied Cryptography and Cryptanalysis HACLxN: Verified Generic SIMD Crypto (for all your favourite platforms) Pointproofs: Aggregating Proofs for Multiple Vector Commitments Session details: Session 4D: Distributed Protocols A Performant, Misuse-Resistant API for Primality Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1