基于NURBS插补的数控系统平面刀具半径补偿

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Mechanics & Industry Pub Date : 2020-01-01 DOI:10.1051/meca/2019044
Jiangang Li, Qian Wang, Ganggang Zhong
{"title":"基于NURBS插补的数控系统平面刀具半径补偿","authors":"Jiangang Li, Qian Wang, Ganggang Zhong","doi":"10.1051/meca/2019044","DOIUrl":null,"url":null,"abstract":"This paper introduces the realization of a tool radius compensation algorithm for NURBS trajectory. First, a single-segment NURBS trajectory tool radius compensation algorithm is developed. Different from the straight line and arc trajectory, the self-intersection phenomenon is prone to happen when calculating a single NURBS tool center trajectory, and the self-intersection will cause the overcut of workpiece. To avoid this situation, the algorithm introduced in this paper can detect whether the NURBS tool center track has caused overcut, and deal with the self-processing. Second, the tool radius compensation algorithm with multi-segment NURBS trajectory is implemented. The focus of this part is the tool radius compensation of the trajectory transfer, and the trajectory transfer is divided into two types: the extension type and the shortened type. For the shortened type transfer, cross-processing is needed to avoid the overcut of workpiece at the transfer. When calculating the tool radius compensation of the shortened type, we not only need to find the intersection of the tool center trajectory of two adjacent NURBS curves, but also need to select the intersection we need when a number of intersections exist. For the extension type transfer, in order to ensure the continuity of the tool center trajectory, we need to extend the tool center trajectory or add arc-segment at the transfer. The proposed algorithm can automatically decide where to extend the tool center trajectory or add arc-segment to achieve the best efficiency. Finally, the algorithm can output the calculated NURBS tool center trajectory in the form of linear segment interpolation G code or NURBS interpolation G code according to the processing needs. Simulations on VERICUT and experiments on three-axis CNC machine tool shows the effectiveness and validation of the tool path compensation algorithm.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Planar tool radius compensation for CNC systems based on NURBS interpolation\",\"authors\":\"Jiangang Li, Qian Wang, Ganggang Zhong\",\"doi\":\"10.1051/meca/2019044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the realization of a tool radius compensation algorithm for NURBS trajectory. First, a single-segment NURBS trajectory tool radius compensation algorithm is developed. Different from the straight line and arc trajectory, the self-intersection phenomenon is prone to happen when calculating a single NURBS tool center trajectory, and the self-intersection will cause the overcut of workpiece. To avoid this situation, the algorithm introduced in this paper can detect whether the NURBS tool center track has caused overcut, and deal with the self-processing. Second, the tool radius compensation algorithm with multi-segment NURBS trajectory is implemented. The focus of this part is the tool radius compensation of the trajectory transfer, and the trajectory transfer is divided into two types: the extension type and the shortened type. For the shortened type transfer, cross-processing is needed to avoid the overcut of workpiece at the transfer. When calculating the tool radius compensation of the shortened type, we not only need to find the intersection of the tool center trajectory of two adjacent NURBS curves, but also need to select the intersection we need when a number of intersections exist. For the extension type transfer, in order to ensure the continuity of the tool center trajectory, we need to extend the tool center trajectory or add arc-segment at the transfer. The proposed algorithm can automatically decide where to extend the tool center trajectory or add arc-segment to achieve the best efficiency. Finally, the algorithm can output the calculated NURBS tool center trajectory in the form of linear segment interpolation G code or NURBS interpolation G code according to the processing needs. Simulations on VERICUT and experiments on three-axis CNC machine tool shows the effectiveness and validation of the tool path compensation algorithm.\",\"PeriodicalId\":49018,\"journal\":{\"name\":\"Mechanics & Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics & Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1051/meca/2019044\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2019044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

介绍了一种NURBS轨迹刀具半径补偿算法的实现。首先,提出了一种单段NURBS轨迹刀具半径补偿算法。与直线和圆弧轨迹不同,在计算单个NURBS刀具中心轨迹时容易发生自相交现象,自相交会造成工件过切。为了避免这种情况,本文介绍的算法能够检测出NURBS刀具中心轨迹是否造成过切,并进行自处理。其次,实现了多段NURBS轨迹的刀具半径补偿算法;该部分的重点是轨迹传递的刀具半径补偿,轨迹传递分为两种类型:扩展型和缩短型。对于缩短型转移,需要进行交叉加工,以避免工件在转移时的过切。在计算缩短型刀具半径补偿时,不仅需要找到两条相邻NURBS曲线的刀具中心轨迹的交点,而且需要在存在多个交点时选择我们需要的交点。对于延伸式传递,为了保证刀具中心轨迹的连续性,需要在传递处延长刀具中心轨迹或增加圆弧段。该算法可以自动决定在何处延长刀具中心轨迹或增加圆弧段,以达到最佳效率。最后,该算法可根据加工需要以线段插补G码或NURBS插补G码的形式输出计算得到的NURBS刀具中心轨迹。在VERICUT上的仿真和三轴数控机床上的实验验证了该算法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Planar tool radius compensation for CNC systems based on NURBS interpolation
This paper introduces the realization of a tool radius compensation algorithm for NURBS trajectory. First, a single-segment NURBS trajectory tool radius compensation algorithm is developed. Different from the straight line and arc trajectory, the self-intersection phenomenon is prone to happen when calculating a single NURBS tool center trajectory, and the self-intersection will cause the overcut of workpiece. To avoid this situation, the algorithm introduced in this paper can detect whether the NURBS tool center track has caused overcut, and deal with the self-processing. Second, the tool radius compensation algorithm with multi-segment NURBS trajectory is implemented. The focus of this part is the tool radius compensation of the trajectory transfer, and the trajectory transfer is divided into two types: the extension type and the shortened type. For the shortened type transfer, cross-processing is needed to avoid the overcut of workpiece at the transfer. When calculating the tool radius compensation of the shortened type, we not only need to find the intersection of the tool center trajectory of two adjacent NURBS curves, but also need to select the intersection we need when a number of intersections exist. For the extension type transfer, in order to ensure the continuity of the tool center trajectory, we need to extend the tool center trajectory or add arc-segment at the transfer. The proposed algorithm can automatically decide where to extend the tool center trajectory or add arc-segment to achieve the best efficiency. Finally, the algorithm can output the calculated NURBS tool center trajectory in the form of linear segment interpolation G code or NURBS interpolation G code according to the processing needs. Simulations on VERICUT and experiments on three-axis CNC machine tool shows the effectiveness and validation of the tool path compensation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics & Industry
Mechanics & Industry ENGINEERING, MECHANICAL-MECHANICS
CiteScore
2.80
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: An International Journal on Mechanical Sciences and Engineering Applications With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities. Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.
期刊最新文献
Numerical investigation of thermal buckling and post-buckling behavior of an EN AW 6016-T4 car roof assembled in a steel body-in-white Analyzing the influence of lifter design and ball mill speed on grinding performance, particle behavior and contact forces A neural network-based data-driven local modeling of spotwelded plates under impact Multi-objective shape optimization of developable Bézier-like surfaces using non-dominated sorting genetic algorithm Experimental quantification of heat haze errors in stereo-DIC displacements: Application to thermoplastics thermoforming temperature range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1