利用电阻率层析成像和地震全波形反演表征喀斯特遗址

IF 1 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Journal of Environmental and Engineering Geophysics Pub Date : 2021-03-01 DOI:10.32389/JEEG20-045
M. Kiernan, D. Jackson, J. Montgomery, J. Anderson, Brannon W. McDonald, K. C. Davis
{"title":"利用电阻率层析成像和地震全波形反演表征喀斯特遗址","authors":"M. Kiernan, D. Jackson, J. Montgomery, J. Anderson, Brannon W. McDonald, K. C. Davis","doi":"10.32389/JEEG20-045","DOIUrl":null,"url":null,"abstract":"Karst geology is characterized by the presence of sinkholes and voids, which may pose significant risk to existing infrastructure. Sinkhole formation is often observed near active quarries, where dewatering operations can alter regional groundwater flow patterns leading to subsidence and increased void formation. In these areas, identifying locations which may be susceptible to sinkhole formation requires an ability to map dissolution features within the rock. Traditional geotechnical explorations alone are not well-suited to this effort as they only provide subsurface information at discrete points and therefore may miss voids within the rock. Geophysical methods offer a means to produce continuous profiles of the rock surface and possible locations for voids but interpreting the results of these tests in karstic geology can be challenging. This study uses 2D electrical resistivity and seismic surveys at a site with previous sinkhole activity along an interstate in central Alabama. The site is adjacent to a limestone quarry. Resistivity data is collected using 2D dipole-dipole and strong-gradient arrays. The seismic data is processed using a full waveform inversion (FWI) technique. Subsurface profiles interpreted from the geophysical surveys are then compared to borehole data from previous site investigations. Results from the geophysical surveys are found to be consistent with borehole data regarding variation of bedrock depth and identification of possible sinkhole features. Potential limitations and sources of error pertaining to each survey type are considered.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"160 1","pages":"1-11"},"PeriodicalIF":1.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Characterization of a Karst Site using Electrical Resistivity Tomography and Seismic Full Waveform Inversion\",\"authors\":\"M. Kiernan, D. Jackson, J. Montgomery, J. Anderson, Brannon W. McDonald, K. C. Davis\",\"doi\":\"10.32389/JEEG20-045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Karst geology is characterized by the presence of sinkholes and voids, which may pose significant risk to existing infrastructure. Sinkhole formation is often observed near active quarries, where dewatering operations can alter regional groundwater flow patterns leading to subsidence and increased void formation. In these areas, identifying locations which may be susceptible to sinkhole formation requires an ability to map dissolution features within the rock. Traditional geotechnical explorations alone are not well-suited to this effort as they only provide subsurface information at discrete points and therefore may miss voids within the rock. Geophysical methods offer a means to produce continuous profiles of the rock surface and possible locations for voids but interpreting the results of these tests in karstic geology can be challenging. This study uses 2D electrical resistivity and seismic surveys at a site with previous sinkhole activity along an interstate in central Alabama. The site is adjacent to a limestone quarry. Resistivity data is collected using 2D dipole-dipole and strong-gradient arrays. The seismic data is processed using a full waveform inversion (FWI) technique. Subsurface profiles interpreted from the geophysical surveys are then compared to borehole data from previous site investigations. Results from the geophysical surveys are found to be consistent with borehole data regarding variation of bedrock depth and identification of possible sinkhole features. Potential limitations and sources of error pertaining to each survey type are considered.\",\"PeriodicalId\":15748,\"journal\":{\"name\":\"Journal of Environmental and Engineering Geophysics\",\"volume\":\"160 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental and Engineering Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.32389/JEEG20-045\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.32389/JEEG20-045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 3

摘要

岩溶地质的特点是存在天坑和空洞,这可能对现有基础设施构成重大风险。在活跃采石场附近经常观察到天坑的形成,在那里,脱水作业可以改变区域地下水流动模式,导致下沉和增加空洞的形成。在这些地区,确定可能容易形成天坑的位置需要能够绘制岩石内部的溶解特征。传统的地质技术勘探并不适合这种工作,因为它们只能提供离散点的地下信息,因此可能会错过岩石内部的空洞。地球物理方法提供了一种生成岩石表面连续剖面和空洞可能位置的方法,但在岩溶地质学中解释这些测试结果可能具有挑战性。本研究使用二维电阻率和地震测量,在阿拉巴马州中部的一个州际公路上进行了以前的天坑活动。场地毗邻石灰岩采石场。电阻率数据采用二维偶极子-偶极子和强梯度阵列收集。地震数据使用全波形反演(FWI)技术进行处理。然后将从地球物理调查中解释的地下剖面与以前现场调查的钻孔数据进行比较。地球物理测量结果与钻孔资料在基岩深度变化和可能的天坑特征识别方面基本一致。考虑了每种调查类型的潜在限制和误差来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of a Karst Site using Electrical Resistivity Tomography and Seismic Full Waveform Inversion
Karst geology is characterized by the presence of sinkholes and voids, which may pose significant risk to existing infrastructure. Sinkhole formation is often observed near active quarries, where dewatering operations can alter regional groundwater flow patterns leading to subsidence and increased void formation. In these areas, identifying locations which may be susceptible to sinkhole formation requires an ability to map dissolution features within the rock. Traditional geotechnical explorations alone are not well-suited to this effort as they only provide subsurface information at discrete points and therefore may miss voids within the rock. Geophysical methods offer a means to produce continuous profiles of the rock surface and possible locations for voids but interpreting the results of these tests in karstic geology can be challenging. This study uses 2D electrical resistivity and seismic surveys at a site with previous sinkhole activity along an interstate in central Alabama. The site is adjacent to a limestone quarry. Resistivity data is collected using 2D dipole-dipole and strong-gradient arrays. The seismic data is processed using a full waveform inversion (FWI) technique. Subsurface profiles interpreted from the geophysical surveys are then compared to borehole data from previous site investigations. Results from the geophysical surveys are found to be consistent with borehole data regarding variation of bedrock depth and identification of possible sinkhole features. Potential limitations and sources of error pertaining to each survey type are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental and Engineering Geophysics
Journal of Environmental and Engineering Geophysics 地学-地球化学与地球物理
CiteScore
2.70
自引率
0.00%
发文量
13
审稿时长
6 months
期刊介绍: The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.
期刊最新文献
Applications and Analytical Methods of Ground Penetrating Radar for Soil Characterization in a Silvopastoral System Introduction to the Journal of Environmental and Engineering Geophysics Special Issue on the Application of Proximal and Remote Sensing Technologies to Soil Investigations Integrated Agrogeophysical Approach for Investigating Soil Pipes in Agricultural Fields Automated Segmentation Framework for Asphalt Layer Thickness from GPR Data Using a Cascaded k-Means - DBSCAN Algorithm Continuous Automatic Estimation of Volumetric Water Content Profile During Infiltration Using Sparse Multi-Offset GPR Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1